
First Contact

IT & Medien Centrum | CC HPC
June 5, 2025

IT & Medien Centrum | LiDO3 | First Contact

Table Of Contents

1 LiDO3 - first contact 7
1.1 Introduction . 7
1.2 Scope . 9
1.3 Non-scope . 9

2 Prerequisites 10
2.1 How do I get / extend a user account? 10

2.1.1 Application . 10
2.1.2 Approval . 12
2.1.3 Account creation . 12

2.2 SSH Key . 12
2.2.1 Create SSH key pair on Unix . 13
2.2.2 Create SSH key pair on Windows 14

2.2.2.1 OpenSSH client . 14
2.2.2.2 PuTTY client (and derived software clients) 15

2.2.3 Changing your SSH public key 18

3 Publications 19

4 Working with LiDO3 20
4.1 Basic workflow . 20
4.2 Connect . 21

4.2.1 Unix . 22
4.2.2 Windows . 24

4.2.2.1 OpenSSH for Windows 25
4.2.2.2 PuTTY . 30
4.2.2.3 WinSCP . 36
4.2.2.4 MobaXterm . 41
4.2.2.5 SSH Cryptonaut . 45

4.2.3 Starnet FastX . 45

LiDO3 | First Contact page 2 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.2.3.1 Using the FastX Client 45
4.2.3.2 Using FastX without Client in a Browser 49
4.2.3.3 Cooperative working with FastX 53

4.2.4 Cendio ThinLinc . 53
4.2.5 Logins to compute nodes and inter-node connections 58
4.2.6 Troubleshooting . 63

4.2.6.1 Keyfile permissions . 63
4.2.6.2 Getting prompted for a password on login 64
4.2.6.3 Rejected connections 64

4.3 Linux Environment . 64
4.3.1 Working with the Linux shell . 64

4.3.1.1 Editing files . 64
4.3.2 Filesystems . 65

4.3.2.1 /home and /work file systems 65
4.3.2.2 Read-only /home directory on compute nodes 67
4.3.2.3 Dealing with the disk space quotas 67

4.3.2.3.1 Compressing application data 68
4.3.2.3.2 du output and the parallel file system BeeGFS 69

4.3.2.4 /scratch file system 69
4.3.3 Filetransfer between LiDO3 and external computers 72
4.3.4 Shared file access . 73
4.3.5 Software modules, environment modules 76

4.3.5.1 Loaded modules . 76
4.3.5.2 Available modules . 76
4.3.5.3 Load a module . 76
4.3.5.4 Unload a module . 77
4.3.5.5 Modules in job scripts 77
4.3.5.6 Compiler modules . 77

4.3.6 Installing your own software . 78
4.3.6.1 configure-make-install 79
4.3.6.2 pip, venv, virtualenv & conda 80

4.4 Resource management . 82
4.4.1 Partitions . 84

4.4.1.1 Standard partitions . 84
4.4.1.2 Faculty partitions . 84
4.4.1.3 slurm command sinfo 85

4.4.2 Slurm job submission . 86
4.4.2.1 Slurm with serial, threaded or MPI-based programs . . 87

4.4.3 Interactive jobs . 89
4.4.3.1 srun - interactive execution and jobsteps 89

LiDO3 | First Contact page 3 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.4.3.2 salloc - Allocate nodes 91
4.4.4 Batched job script execution . 93

4.4.4.1 sbatch - Submit a job script 93
4.4.5 Controlling running and finished jobs 95

4.4.5.1 scontrol, squeue, showq - Query Job status 95
4.4.5.2 scancel - Cancel a queued job 99
4.4.5.3 Decreasing job priority with scontrol, sbatch . 99
4.4.5.4 seff, sacct - show post job performance analysis 100

4.4.6 Constraints on node-features . 101
4.4.7 Generic Resource (GRES) - request a GPU 106
4.4.8 Memory management . 109
4.4.9 Utilize complete nodes . 112
4.4.10 SBATCH statements inside of Slurm job scripts 113
4.4.11 Slurm cheat sheet . 117
4.4.12 List of job states . 119
4.4.13 Format options for slurm commands 119
4.4.14 Job variables . 120

4.5 Examples . 121
4.5.1 Basic slurm script example . 121
4.5.2 Example using multiple GPU nodes 121
4.5.3 Common software example: Abaqus 122

4.5.3.1 On a single compute node 122
4.5.3.2 On multiple compute nodes 125

4.5.4 Common software example: Ansys CFX 128
4.5.4.1 On a single compute node 128
4.5.4.2 On multiple compute nodes 129

4.5.5 Common software example: Ansys Fluent 131
4.5.5.1 On a single compute node 131
4.5.5.2 On multiple compute nodes 132

4.5.6 Common software example: Ansys Mechanical APDL 133
4.5.6.1 On a single compute node 133
4.5.6.2 On multiple compute nodes 137

4.5.7 Common software example: Ansys Workbench 142
4.5.8 Common software example: Gaussian 143
4.5.9 Common software example: Matlab 146
4.5.10 Common software example: ORCA 149

4.5.10.1 On a single compute node 149
4.5.10.2 On multiple compute nodes 152

4.5.11 Common software example: Python 154
4.5.11.1 On a single compute node 154

LiDO3 | First Contact page 4 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.5.11.2 On multiple compute nodes 155
4.5.11.3 Multithreading . 155

4.5.12 Common software example: R 157
4.5.12.1 Using own R packages 157
4.5.12.2 Installing own R packages 159

4.5.12.2.1 Tweaking compiler optimisation flags 163
4.5.12.3 Using multiple versions of R along with self-compiled

R packages . 164
4.5.12.4 Example Slurm job script for R 165

4.5.13 Common software example: TOPAS Tool for Particle Simulation 166
4.5.13.1 Running a single TOPAS simulation 166
4.5.13.2 Running hundreds of TOPAS simulations 178

4.5.14 Third-party node usage example 189
4.5.15 Signals and traps . 189

4.5.15.1 Have a job automatically clean up when exceeding
requested wallclock time limit 190

4.5.15.2 Passing Signals to your running application 193
4.5.15.2.1 Sending arbitrary signals to a Slurm job . . . 194

4.5.16 Example for job steps . 195
4.5.17 Example for parallel debugging with TotalView 196

4.6 System overview . 199
4.7 Dictionary . 200

4.7.1 Walltime . 200
4.7.2 Backfilling . 200

4.8 Get support / contact . 202
4.9 Frequently asked questions . 202

4.9.1 My Slurm job exits with can't open /dev/ipath, network
↪ down (err=26) . 202

4.9.2 No GPU is visible on a GPU node 203
4.9.3 How can I use more than one CPU socket on a GPU node? . . 203
4.9.4 Can I have Visual Studio Code on LiDO3? 203
4.9.5 I can not open X11 programs on one gateway or compute node,

but not on others . 204
4.10 Appendix . 206

4.10.1 Symbolic links for non-writable home directory 206
4.10.2 Migrating your Slurm scripts to full node usage 208

4.10.2.1 Executing several processes concurrently in the back-
ground . 208

4.10.2.2 Slurm’s srun --multi-prog option 210
4.10.2.3 GNU Parallel . 212

LiDO3 | First Contact page 5 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.10.3 Slurm for Torque/PBS users . 214
4.10.3.1 Job variables in Slurm and Torque 215

4.10.4 Picture credits . 216

LiDO3 | First Contact page 6 of 216

IT & Medien Centrum | LiDO3 | First Contact

Chapter 1

LiDO3 - first contact

1.1 Introduction

You may have a laptop or PC with 8 to 16 cores, several terabytes of hard disk space
and several gigabytes of main memory – or access to a comparably equipped server.
Because you have determined that this equipment is not sufficient for the simulations
you intend to run with your application, you were redirected to the HPC cluster LiDO3.
However, LiDO3 is not one particularly powerful and well-equipped server with thou-
sands of cores, petabytes of hard disk space and terabytes of main memory. In other
words, it is not a scaled-up version of your own equipment. Instead it is more a
scaled-out version: it consists of several hundred individual servers with an average

LiDO3 | First Contact page 7 of 216

IT & Medien Centrum | LiDO3 | First Contact

equipment like the laptop or PC or server mentioned at the beginning, plus a jointly
usable hard disk space every one of these servers can use concurrently, connected via
a special low-latency and fast network.
So, when bringing an application to LiDO3 that runs with a single thread on a processor
(or, more precisely, on single compute core) you can not expect that the runtime of
this application for a given set of input will be faster than on your local laptop or PC
or server! In order to reach results faster, your application needs to be able to run
in parallel. Either by means of shared-memory multiprocessing with threads1 (using
technologies like, e.g., OpenMP2) that allows an application to use more than one
compute core in a compute node. Or by means of distributed-memory multiprocessing,
built on top of the MPI library3, that allows for an application to use several compute
nodes. “Several” can be anything between two and several hundred compute nodes on
LiDO3; on bigger sites (so-called Tier-2 and Tier-1 sites, read more on national HPC
association NHR4 and PRACE initiative5) the upper limit might be tens of thousands
of compute nodes. For a serial, non-threaded application, on the other hand, the
runtime on LiDO3 and any of those Tier-2/Tier-1 sites might even be slower than on
your local compute hardware!
Given that LiDO3 is not a single big computer, but hundreds of mid-sized ones, the
use of LiDO3 differs from the use of your laptop or PC or server:
You can not simply run your application on one of the LiDO3 gateways. You could,
but in this case the resources of the gateways (40 cores, 256 GiB RAM) would already
be exhausted by the need of simulations of individual users! Attempts to perform large
calculations on the gateways is not prevented from the outset, but is sanctioned in the
case of discovery with the temporary blocking of the user account.
As – in contrast to your laptop/PC/server – several hundred scientists and students
have access to LiDO3 and want to run potentially dozens to thousands of simula-
tions simultaneously on LiDO3, there is a scheduler that attempts to broker between
computational demand and the available computational resources. It distributes the
simulations over the available compute nodes in a way that not several users share the
same resources (CPU/RAM) or, in the worst case, eat them away one another.

1https://en.wikipedia.org/wiki/Thread_(computing)#Threads_vs_
processes

2https://en.wikipedia.org/wiki/Openmp
3https://en.wikipedia.org/wiki/Message_Passing_Interface
4https://de.wikipedia.org/wiki/Verbund_f%C3%BCr_Nationales_

Hochleistungsrechnen
5https://de.wikipedia.org/wiki/Partnership_for_Advanced_Computing_

in_Europe

LiDO3 | First Contact page 8 of 216

https://en.wikipedia.org/wiki/Thread_(computing)#Threads_vs_processes
https://en.wikipedia.org/wiki/Openmp
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://de.wikipedia.org/wiki/Verbund_f%C3%BCr_Nationales_Hochleistungsrechnen
https://de.wikipedia.org/wiki/Verbund_f%C3%BCr_Nationales_Hochleistungsrechnen
https://de.wikipedia.org/wiki/Partnership_for_Advanced_Computing_in_Europe
https://en.wikipedia.org/wiki/Thread_(computing)#Threads_vs_processes
https://en.wikipedia.org/wiki/Thread_(computing)#Threads_vs_processes
https://en.wikipedia.org/wiki/Openmp
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://de.wikipedia.org/wiki/Verbund_f%C3%BCr_Nationales_Hochleistungsrechnen
https://de.wikipedia.org/wiki/Verbund_f%C3%BCr_Nationales_Hochleistungsrechnen
https://de.wikipedia.org/wiki/Partnership_for_Advanced_Computing_in_Europe
https://de.wikipedia.org/wiki/Partnership_for_Advanced_Computing_in_Europe

IT & Medien Centrum | LiDO3 | First Contact

This scheduler is called Slurm6. It provides interactive and non-interactive (so-called
batch jobs) sessions.
The interactive workflow differs from the way you are used to work on your laptop only
by an additional command in advance (look for the srun command in the remainder of
this document or any Slurm documentation). Be aware, though, that for an interactive
Slurm session to work as intended, you do rely on a uninterrupted network connection
to LiDO3 for the entire duration of the execution of your simulation! In addition, it
may happen that sufficient resources for your interactive Slurm job become available
only after some time of waiting (few hours or days of waiting time, depending on the
size of your resource request). Possibly at an inconvenient time, e.g. at night at 2
a.m., a time you do not want to work or are not at your computer at all.
That is why the use of batch jobs for large production calculations is generally prefer-
able.

If you happen to not unterstand how to use the Slurm scheduling system after
reading this document, please contact us beforehand, thus we can clarify on how your
application could be ported and executed correctly to LiDO3.

1.2 Scope
This document intends to guide you through the first steps on LiDO3, TU Dortmund’s
high performance cluster (HPC): to get access to the system and a job running.
We renounce the explicit mention of the female form and hope that this omission
allows fluent reading of the instructions.

1.3 Non-scope
Programming, especially parallel programming and the usage of libraries like MPI7 is
not subject of this document. Neither is it a guide for structuring workload to scale
on a HPC environment.

6https://en.wikipedia.org/wiki/Slurm
7https://en.wikipedia.org/wiki/Message_Passing_Interface

LiDO3 | First Contact page 9 of 216

https://en.wikipedia.org/wiki/Slurm
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Slurm
https://en.wikipedia.org/wiki/Message_Passing_Interface

Chapter 2

Prerequisites

2.1 How do I get / extend a user account?

2.1.1 Application
Applications can be submitted by students and permanent employees of the Technische
Universität Dortmund.
In most cases, students and employees of the Technische Universität Dortmund can
use the LiDO3 usermanagement portal1 to submit an application online.
In this application form, it is mandatory to provide information about the intended
purpose of LiDO usage, termination date of LiDO usage, email address of your approver
(your supervising professor) and your public SSH key which you are supposed to have
generated before submitting the form.
For generating your public and private key pair see page 12.

To minimize the attack surface for cyber attacks, the LiDO3 usermanagement
portal is reachable from within the TU Dortmund University network only, i.e.
your client machine must have an IP address assigned in the range between
129.217.0.1 and 129.217.255.255; if you connect from outside the university or
are connected via Wifi network eduroam, first establish a VPN connection to
vpn.tu-dortmund.de; single-sign-on login with uni account is mandatory).

1https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/
lido3-account-application-form.html

10

https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/lido3-account-application-form.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/lido3-account-application-form.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/lido3-account-application-form.html

IT & Medien Centrum | LiDO3 | First Contact

Figure 2.1: Insert your generated public key into the “SSH Public Key” field to submit
your public key.

Users of the PuTTY client must convert their key into the OpenSSH format
first, see figure 2.4 on page 17.

To manage your existing LiDO3 user account, please use the web forms in the
LiDO3 user management portal2To minimize the attack surface for cyber attacks,
the LiDO3 usermanagement portal is reachable from within the TU Dortmund
University network only, i.e. your client machine must have an IP address as-
signed in the range between 129.217.0.1 and 129.217.255.255; if you connect

2https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/
index.html

LiDO3 | First Contact page 11 of 216

https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html

IT & Medien Centrum | LiDO3 | First Contact

from outside the university or are connected via Wifi network eduroam, first
establish a VPN connection to vpn.tu-dortmund.de; single-sign-on login
with uni account is mandatory).

If the project is funded by the Fachhochschule Dortmund or UA Ruhr within the
framework of a cooperaton with the Technische Universität Dortmund, you have to
open a ticket at the Service Desk3. Please note that this application can only be used
by professors for their own projects, doctoral or post-doctoral research.

2.1.2 Approval
Upon submitting the application form4, your approver (your supervising professor)
will be informed via e-mail about your account application. The approver is kindly
requested to accept or decline your application. Once the approver has accepted or
declined your LiDO3 account application, a ticket is generated in the ITMC ticket
system that involves informing the LiDO team. If the approver does not react, a
reminder will be sent every Monday after 7 days. If the approver still does not react,
the LiDO team will notify you about the delay.

2.1.3 Account creation
Once an approver has accepted your account application, the LiDO team gets informed
by the ticket system about it. Typically, within a work day or two your account is then
semi-automatically created. If it takes considerably longer and you do not get any
feedback about your account creation, it is almost certain the LiDO team has not
yet been informed about your pending account application, but that the approver has
overlooked the e-mail that asks for approval or denial of your account application. In
that case, you may want to check with your approver first before contacting the Service
Desk.

2.2 SSH Key
SSH keys are used to identify yourself to a computer using public key cryptography5

instead of a password. On one hand, this is done for security reasons – a SSH key is
much harder to crack than a password, if at all feasible within reasonable time – and
on the other hand for user comfort.

3https://itmc.tu-dortmund.de/das-itmc/kontakt/service-desk/
4https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/

lido3-account-application-form.html
5https://en.wikipedia.org/wiki/Public-key_cryptography

LiDO3 | First Contact page 12 of 216

https://itmc.tu-dortmund.de/das-itmc/kontakt/service-desk/
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/lido3-account-application-form.html
https://en.wikipedia.org/wiki/Public-key_cryptography
https://itmc.tu-dortmund.de/das-itmc/kontakt/service-desk/
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/lido3-account-application-form.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/lido3-account-application-form.html
https://en.wikipedia.org/wiki/Public-key_cryptography

IT & Medien Centrum | LiDO3 | First Contact

The use of SSH keys is mandatory. You cannot log into LiDO3 with a username
and password. In case you are prompted for a password other than your SSH key
passphrase when you try to log in to either one of the gateway servers, something is
entirely wrong:
◾ You are using a SSH client that does only support authentication via passwords,

but maybe not via SSH keys. Or
◾ You used the SSH public key in your client instead of the SSH private key. Or
◾ The SSH public key entered in the LiDO3 account application web form (see 2.1)

got scrambled (or its PuTTY file format representation was used instead of the
canonical OpenSSH file format) such that your valid SSH private key does not
match the scrambled SSH public key stored on LiDO3 any more, or
◾ The SSH private key you are using to connect to LiDO3 belongs to a SSH public

key not stored (any more?) on LiDO3.
The internet is full of good tutorials that show how to create and use a SSH key. The
approach is a bit different for Linux users6 and for Windows/PuTTY users7. We will,
hence, keep our tutorial short:

2.2.1 Create SSH key pair on Unix
Open a shell and enter

$ ssh-keygen -t rsa -b 4096 -C "comment helping you identify this
↪ key"

or

$ ssh-keygen -a 100 -t ed25519 -C "comment helping you identify
↪ this key"

If you already have other SSH key pairs, you can change the default filename in the
following, otherwise just confirm the default by pressing the enter key.

6https://www.digitalocean.com/community/tutorials/how-to-set-up-
ssh-keys--2

7https://www.howtoforge.com/how-to-configure-ssh-keys-
authentication-with-putty-and-linux-server-in-5-quick-steps

LiDO3 | First Contact page 13 of 216

https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2
https://www.howtoforge.com/how-to-configure-ssh-keys-authentication-with-putty-and-linux-server-in-5-quick-steps
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2
https://www.howtoforge.com/how-to-configure-ssh-keys-authentication-with-putty-and-linux-server-in-5-quick-steps
https://www.howtoforge.com/how-to-configure-ssh-keys-authentication-with-putty-and-linux-server-in-5-quick-steps

IT & Medien Centrum | LiDO3 | First Contact

Generating public/private rsa key pair.
Enter file in which to save the key
(/home/<username>/.ssh/id_rsa):

When prompted, type a secure passphrase to protect8 your SSH private key.

Enter passphrase (empty for no passphrase):
[Type a passphrase]
Enter same passphrase again:
[Type passphrase again]
Your identification has been saved in
↪ /home/<username>/.ssh/id_rsa.

Your public key has been saved in
↪ /home/<username>/.ssh/id_rsa.pub.

(...)

Copy and paste only the SSH public key into the user application form (see page 11)
after the successful creation. Typically, the file containing the SSH public key is stored
upon creation on your local system in a file with .pub file extension. Make sure to
use the SSH private key when establishing a connection to the LiDO3 gateways with
your SSH client software.

2.2.2 Create SSH key pair on Windows
2.2.2.1 OpenSSH client

With Windows Server 2022, Windows Server 2019, Windows 10 (build 1809 and later)9

or newer) or Windows 11, an OpenSSH port is available in the command line prompt (in
German-localized versions of Windows named ’Eingabeaufforderung’). This includes
the program ssh-keygen described in the previous section 2.2.1. Its syntax is exactly
the same. It will produce an SSH key pair in OpenSSH key format.

8If someone ever gains access to your computer (or to the files stored there, e.g. by accessing
your backup drives), they also gain access to every system that uses your SSH key pair. To add an
extra layer of security, you should use a passphrase to encrypt your SSH private key.

9You can check the version of Windows 10 by pressing Win-key+R and then invoke the command
winver. An information dialog will pop up detailing the specific version of your Windows 10
installation, e.g. Version 21H1 (Build 19043.2251).

LiDO3 | First Contact page 14 of 216

IT & Medien Centrum | LiDO3 | First Contact

2.2.2.2 PuTTY client (and derived software clients)

If you want to rely on a GUI-based solution, you can use the PuTTY Key Generator
(puttygen.exe) from the PuTTY Software Suite.1011

To create your SSH key pair for use on LiDO3 select either one of the four SSH key
types “RSA”, “DSA”, “ECDSA”, “ED25519”. Please do not use “SSH-1 (RSA)”;
the algorithm for this SSH key type is outdated and not supported any more on LiDO3
for security reasons.
To start the SSH key pair creation click on the button Generate.

Figure 2.2: Choose SSH key type and click Generate.

For increased randomness in the generated SSH key, the user is required to move his
mouse in random directions while the key is being generated. If you do not move your
mouse around, the key generation will stall.

10https://www.chiark.greenend.org.uk/~sgtatham/putty/
11The MobaXterm SSH Key Generator is a direct clone of PuTTY Key Generator.

LiDO3 | First Contact page 15 of 216

https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/

IT & Medien Centrum | LiDO3 | First Contact

Figure 2.3: Random movements of the mouse pointer are used in order to create the
key pair.

Once the SSH key pair has been generated, two steps remain: Firstly, store the SSH
public key in a key file format that is understood by the OpenSSH server on LiDO3.
Secondly, protect the SSH private key with a robust passphrase against abuse.
By default, PuTTY uses, unfortunately, its own propriatory key file formats, both for
the SSH private key and the SSH public key. Hitting the button Save public key
would store the SSH public key in PuTTY’s propriatory key file format. For conve-
nience, though, the SSH public key is also shown in OpenSSH key file format in the
top section of the PuTTY Key Generator’s main window, once it has been generated.
Copy your freshly created SSH public key from the frame labeled Public key
↪ for pasting into OpenSSH authorized_keys file (see figure 2.4)
and paste it into the LiDO3 account application web form (see figure 2.1 on page 11).

LiDO3 | First Contact page 16 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 2.4: Save the SSH private key and the SSH public key. Copy and paste the
SSH public key (marked in yellow) to the user application form.

A typical, valid SSH public keys (in OpenSSH key file format) starts with either one of
the following strings. Please make sure you do not try to upload the SSH public key
in PuTTY’s key file format:

ssh-rsa AAAAB3NzaC1[...]
ssh-dss AAAAB3NzaC1[...]
ssh-ed25519 AAAAC3N[...]

The last step is to enter a passphrase which is later used to protect your SSH private
key in the text field labeled Key passphrase and then hit the button Save
↪ private key. Select a directory to your liking to save the SSH private key and
make sure nobody else has access to this directory. You will require this file in the
future every time you intend to connect to the LiDO3 gateways.
If you intend to use your SSH private key with programs other than PuTTY, programs
that use the OpenSSH key file format, e.g. with ThinLinc (see section 4.2.4), you are
advised to save a copy of your SSH private key in OpenSSH key file format right away.
Convert it via menu Conversions→Export OpenSSH key to a new file. (The
conversion can be done at a later time by first loading your SSH private key in PuTTY
key file format (file extension *.ppk) as well.)

LiDO3 | First Contact page 17 of 216

IT & Medien Centrum | LiDO3 | First Contact

2.2.3 Changing your SSH public key
Unlike on other Unix systems your SSH key will not be visible in ~/.ssh/authorized_keys
on LiDO3. Thus any changes to your key must be advertised in the LiDO3 user
management portal12.To minimize the attack surface for cyber attacks, the LiDO3
usermanagement portal is reachable from within the TU Dortmund University net-
work only, i.e. your client machine must have an IP address assigned in the range
between 129.217.0.1 and 129.217.255.255; if you connect from outside the univer-
sity or are connected via Wifi network eduroam, first establish a VPN connection to
vpn.tu-dortmund.de; single-sign-on login with uni account is mandatory).

12https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/
index.html

LiDO3 | First Contact page 18 of 216

https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html

Chapter 3

Publications

Please drop us a short e-mail with a citation reference for publications for which LiDO3
has been used. We need this information in our reports to DFG (German Research
Foundation) that partially funded the LiDO3 acquisition.
It would be appreciated if you could include a short acknowledgement in your paper,
something along the lines of:

The authors gratefully acknowledge the computing time
provided on the Linux HPC cluster at Technical University
Dortmund (LiDO3), partially funded in the course of the
Large-Scale Equipment Initiative by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) as
project 271512359.

or

Die erforderlichen Berechnungen wurden auf dem
Linux-HPC-Cluster der Technischen Universität Dortmund
(LiDO3) durchgeführt, in Teilen durch die
Forschungsgroßgeräte-Initiative der Deutschen
Forschungsgemeinschaft (DFG) unter der Projektnummer
271512359 gefördert.

19

Chapter 4

Working with LiDO3

4.1 Basic workflow
The basic workflow is
◾ Connect to one of the gateway servers via SSH1.
◾ Create a job.
◾ Enqueue the job into the job queue.
◾ One or more nodes calculate the result.
◾ Receive the result on a gateway server.

Figure 4.1: Clients connect to one of the gateway servers and transmit jobs.

1http://en.wikipedia.org/wiki/Secure_Shell

20

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_Shell

IT & Medien Centrum | LiDO3 | First Contact

4.2 Connect
As long as your operating systems has an up-to-date version of a SSH2-client, you can
connect to one of the gateway servers:
◾ gw01.lido.tu-dortmund.de
◾ gw02.lido.tu-dortmund.de

Both gateways have the same software stack and allow access to all jobs and files, it
does not matter which one you choose. If one gateway is down due to maintenance or
failure, there is still a second one.
The login credentials consist of your unimail username and the private key of the key
pair you provided us in the application form.
If you used a passphrase to protect your private SSH key – what we recommend –,
the SSH client (or an authentication agent like pageant) will prompt you for that
passphrase.3 Typically, you have about one minute to answer the passphrase prompt
until the SSH key exchange is severed by the LiDO3 gateway you are trying to connect
to.5 If otherwise the requested password is not related to the private key file, but to
the actual login, e.g.

<username@gw01.lido.tu-dortmund.de's password:

something is either wrong in your setup or the private SSH key does not match the
public SSH key stored on LiDO3.

Please note that LiDO3 is only reachable inside the university network! If you
want to use LiDO3 from outside the university, e.g. from home or at a conference, it is
mandatory to establish a VPN connection to the TU Dortmund network first. If you try
to create a SSH connection to LiDO3 without a VPN connection from outside the TU
Dortmund network, you will get a network time out error message. With PuTTY, the
error message looks like depicted in figure 4.2.6 Given that your SSH connection will

2http://en.wikipedia.org/wiki/Secure_Shell
3Depending on the actual SSH Client, you might not get any visual or acoustic feedback while you

type your passphrase.4 For instance with PuTTY, it might seem your keyboard entries are completely
ignored until you press the enter key.

5After that grace period to enter the passphrase has expired, PuTTY, e.g., will report a Fatal
↪ Error and that the remote side unexpectedly closed the network connection.

6See the ServicePortal7 for up-to-date information and tutorials on how to establish a VPN con-
nection to the TU Dortmund network.

LiDO3 | First Contact page 21 of 216

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_Shell
https://service.tu-dortmund.de/

IT & Medien Centrum | LiDO3 | First Contact

be severed every time you VPN connection gets reset, it is recommended to connect to
LiDO3 inside a remote desktop session that runs on a server inside the TU Dortmund
network. So, establish a VPN connection to the TU Dortmund network, (re-)connect
to a remote desktop session and from within that session create a SSH connection
to LiDO3. This way, whenever you are working interactively on LiDO3, e.g. when
using a graphical program like Abacus, DDT, Totalview, your entire workflow does not
terminate in case your VPN connection gets interrupted. Remote Desktop sessions are
available for Windows, Mac and Linux8. For non-graphical LiDO3 usage, you may want
to use a terminal multiplexing software on the LiDO3 gateways directly, e.g. tmux10.
This has a lower overhead that a remote desktop session and still protects you from
loosing your environment if the network connection to LiDO3 gets interrupted.

Figure 4.2: PuTTY reports a Fatal Error while connecting to LiDO3 gateways from
outside the TU Dortmund network, without an active VPN connection to the TU
Dortmund.

4.2.1 Unix
On any Unix-style operating system you should be able to connect from a terminal via

ssh -i <private ssh-key> <account_name>@<gateway_name>

replacing <private ssh-key> with the path/filename of your private SSH
Key (see page 12), <account_name> with your LiDO-account-name and
<gateway_name> with one of the pre-mentioned names of the gateway servers.

8Look into Cendio ThinLinc software9 when connecting to LiDO3 from Linux.
10https://github.com/tmux/tmux

LiDO3 | First Contact page 22 of 216

https://github.com/tmux/tmux
https://www.cendio.com/
https://github.com/tmux/tmux

IT & Medien Centrum | LiDO3 | First Contact

If you connect to one of the gateway servers for the first time, you will be asked whether
the key fingerprint of this server is correct. This is done for security reasons to make
sure that this really is one of the servers you want to connect to. Key fingerprints are
long alphanumeric strings which are notoriously difficult to compare. For this, their –
much shorter and for this easier to compare – hash value is calculated (typically using
the cryptographic hash functions MD5 or SHA256, depending on your particular SSH
client) and shown.
The correct key fingerprints are as follows:
For Gateway 1:

$ ssh-keygen -lf <(ssh-keyscan gw01.lido.tu-dortmund.de)
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 SHA256:rG0Cmye6DibyWvaqjHcma6vnwsvTfYATy1JM/O200Ns
↪ gw01.lido.tu-dortmund.de (RSA)

256 SHA256:SxL75DVFyNKVbSMkB1M/fPTy5qcPtWa5M9iHHe9OETU
↪ gw01.lido.tu-dortmund.de (ECDSA)

256 SHA256:lUQLD2VY/pTVpsSPwuUwvHA8jm/tNiGJ+GbaHP9sBPo
↪ gw01.lido.tu-dortmund.de (ED25519)

For Gateway 2:

$ ssh-keygen -lf <(ssh-keyscan gw02.lido.tu-dortmund.de)
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
256 SHA256:sYjJMuRut7jSomxbluWOf0YKE1y5QE5esAQovRBveHo
↪ gw02.lido.tu-dortmund.de (ED25519)

When using an older version of PuTTY, the fingerprints may still be given in the MD5
format instead of the SHA256 format.
For Gateway 1:

root@gw01: /root>ssh-keygen -E md5 -lf <(ssh-keyscan
↪ gw01.lido.tu-dortmund.de)

gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4

LiDO3 | First Contact page 23 of 216

IT & Medien Centrum | LiDO3 | First Contact

gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 MD5:a5:e3:b4:7f:cc:53:15:32:89:17:d7:ed:14:d5:6e:9d
↪ gw01.lido.tu-dortmund.de (RSA)

256 MD5:c6:ee:1d:4b:da:c9:dc:6c:86:08:30:14:f8:ff:18:f8
↪ gw01.lido.tu-dortmund.de (ECDSA)

256 MD5:a0:f4:f8:63:e8:79:e5:88:23:2d:1c:44:de:fc:18:81
↪ gw01.lido.tu-dortmund.de (ED25519)

For Gateway 2:

root@gw02: /root>ssh-keygen -E md5 -lf <(ssh-keyscan
↪ gw02.lido.tu-dortmund.de)

gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 MD5:a5:e3:b4:7f:cc:53:15:32:89:17:d7:ed:14:d5:6e:9d
↪ gw02.lido.tu-dortmund.de (RSA)

256 MD5:c6:ee:1d:4b:da:c9:dc:6c:86:08:30:14:f8:ff:18:f8
↪ gw02.lido.tu-dortmund.de (ECDSA)

256 MD5:2f:58:ae:c4:eb:aa:bb:88:cf:5f:a1:fa:fc:49:0b:64
↪ gw02.lido.tu-dortmund.de (ED25519)

4.2.2 Windows
Older versions of Microsoft Windows came with no built-in SSH11-client-software, so
you had to download and install a third-party tool:
◾ PuTTY (4.2.2.2), a well known, free and sufficient, but purely text-based SSH

client
◾ Cendio Thinlinc (4.2.4), a remote desktop application (i.e. that allows running

graphical applications) that encrypts all network traffic between client and server
via SSH protocol
◾ MobaXterm (4.2.2.4), a fork based on PuTTY, with integrated X11 server that

allows running graphical applications, tabs for multiple concurrent SSH connec-
tions and network tools.
◾ OpenSSH from the Cygwin project12, another free, sufficient, text-based SSH

client
◾ Bitvise SSH client13, free for use of all types, including in organizations

11http://en.wikipedia.org/wiki/Secure_Shell
12http://cygwin.org/
13https://www.bitvise.com/

LiDO3 | First Contact page 24 of 216

http://en.wikipedia.org/wiki/Secure_Shell
http://cygwin.org/
https://www.bitvise.com/
http://en.wikipedia.org/wiki/Secure_Shell
http://cygwin.org/
https://www.bitvise.com/

IT & Medien Centrum | LiDO3 | First Contact

With Windows Server 2022, Windows Server 2019, Windows 10 (build 1809 and
later)14 or newer) or Windows 11, there are two additional options:
◾ These operating systems ship with a text-based SSH client15 named ssh.exe.

It is a port of OpenSSH described in the previous section 4.2.1. To use ssh
first open a command prompt16 and from the command prompt window, invoke
ssh.
◾ Install a Linux subsystem17 and use that to start a connection.

Since Windows users may not be used to connect to other computers via SSH18, we
will describe a few commonly used SSH clients in more detail here. Of course, you can
use other SSH client software if that suits you better.

4.2.2.1 OpenSSH for Windows

With Windows Server 2022, Windows Server 2019, Windows 10 (build 1809 and
later)19 or newer) or Windows 11, ensure you are connected to the TU Dortmund
network (directly or via VPN), open the command prompt (in German-localized ver-
sions of Windows named ’Eingabeaufforderung’) and invoke

$ ssh -m hmac-sha2-512-etm@openssh.com -i
↪ \path\to\SSH\private\key\in\openssh\key\format
↪ <username>@gw01.lido.tu-dortmund.de

Listing 4.1: Command line to connect from Windows command prompt with
OpenSSH_for_Windows to LiDO3 gateway server

but make sure to replace the correct path to your SSH private key and your username
in listing 4.1.
If you secured your SSH private key with a passphrase (which is highly recommended!),
you will be prompted for it now (see figure 4.3).

14You can check the version of Windows 10 by pressing Win-key+R and then invoke the command
winver. An information dialog will pop up detailing the specific version of your Windows 10
installation, e.g. Version 21H1 (Build 19043.2251).

15https://learn.microsoft.com/en-us/windows-server/administration/
openssh/openssh_overview

16Press Win-key+R and then invoke the command cmd.exe
17https://docs.microsoft.com/en-us/windows/wsl/install-win10
18http://en.wikipedia.org/wiki/Secure_Shell
19You can check the version of Windows 10 by pressing Win-key+R and then invoke the command

winver. An information dialog will pop up detailing the specific version of your Windows 10
installation, e.g. Version 21H1 (Build 19043.2251).

LiDO3 | First Contact page 25 of 216

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://en.wikipedia.org/wiki/Secure_Shell
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://en.wikipedia.org/wiki/Secure_Shell

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.3: Create a new text file named “config” in directory
%userprofile%\.ssh

If your SSH private key is accepted, you will be subsequently logged in to LiDO3 (see
figure 4.4).

Figure 4.4: Create a new text file named “config” in directory
%userprofile%\.ssh

You can reduce the lengthy command line from listing 4.1 by either creating a so-called
batch file (a simple text file with the file extension .bat), e.g. sshlido3.bat.
Make sure to insert the entire command line from listing 4.1, but replace the correct
path to your SSH private key and your username. Subsequently, you only need to
invoke this batch file to log in to LiDO3:

> \path\to\your\batch\file\sshlido3.bat

LiDO3 | First Contact page 26 of 216

IT & Medien Centrum | LiDO3 | First Contact

Or you create a SSH config file. The latter will allow you to log in from your command
prompt via

> ssh gw01.lido.tu-dortmund.de
> ssh gw02.lido.tu-dortmund.de

Listing 4.2: Command line to connect from Windows command prompt with
OpenSSH_for_Windows to LiDO3 gateway server, implicitly making use of a ssh
config file

To create a SSH config file, point your Windows explorer to the directory \%userprofile
and create a new text file there named config (see figure 4.5):

Figure 4.5: Create a new text file named “config” in directory
%userprofile%\.ssh

Its content differs from that of the batch file, but is more flexible as it configures
access for both LiDO3 gateway servers at the same time. Again replace in figure 4.6
the correct path to your SSH private key and your username.

LiDO3 | First Contact page 27 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.6: Example of a OpenSSH config file

When you try to log in to LiDO3 for the first time with OpenSSH, ssh might complain
about inadequate file permissions for your SSH private key, e.g.

@@@
@ WARNING: UNPROTECTED PRIVATE KEY FILE! @
@@@
Permissions for '\path\to\SSH\private\key\in\openssh\key\format'
are too open. It is required that your private key files are NOT
accessible by others. This private key will be ignored.
Load key "\path\to\SSH\private\key\in\openssh\key\format": bad
↪ permissions

or the config file, e.g.

> ssh gw01.lido.tu-dortmund.de
%% Bad owner or permissions on /path/to/user/profile/.ssh/config

If it does, you will not be able to log in. The remedy for both files is to disable
inheritance of file permissions for each of these files and to remove read permissions
for all system users and administrators but yourself. The procedure is to do this is as
follows: from the context menu of your SSH private key file and/or the SSH config file
select the last menu item Properties (in German-localized versions of Windows
named ’Eigenschaften’). A dialog window will open. Select the second tab labeled
Security and click the button Advanced (see figure 4.7).

LiDO3 | First Contact page 28 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.7: Impose sufficiently restrictive file permissions for OpenSSH (step 1)

Another dialog window will open. In its first tab click the button Disable inheritance
(see figure 4.8). You will subsequently be asked whether you want to Replace all
↪ child object permissions entries with inheritable permission
↪ entries from this object. Confirm this choice.

LiDO3 | First Contact page 29 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.8: Impose sufficiently restrictive file permissions for OpenSSH (step 2)

Subsequently, remove all permission entries except for one that refers to your Windows
username. In other words, remove all permissions for system accounts, administrator
roles and other accounts but your own account (see figure 4.9. Save the changes by
click the OK button of this dialog window and again the OK button of the file properties
dialog window.

Figure 4.9: Impose sufficiently restrictive file permissions for OpenSSH (step 3)

Now, you will be able to log in as shown in listing 4.2.

4.2.2.2 PuTTY

Download the latest version of PuTTY20 and install it on your Windows client.
20https://www.chiark.greenend.org.uk/~sgtatham/putty/

LiDO3 | First Contact page 30 of 216

https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/

IT & Medien Centrum | LiDO3 | First Contact

When you fire up PuTTY for the first time in order to connect to the LiDO3 cluster,
make the following changes to its configuration screen:
◾ In category Session specify as hostname one of the gateway servers, i.e.
gw01.lido.tu-dortmund.de or gw02.lido.tu-dortmund.de (see
figure 4.10), use port 22 and connection type SSH.
To avoid having to reconfigure PuTTY every time you are about to connect to
the LiDO3 cluster, provide a name in the text field Saved Sessions and save
your settings by hitting the Save button. (Do not forget to return here once
you have made other changes to the configuration in order to save the updated
settings!)

Figure 4.10: Mandatory: Enter the gateway name, path to your private SSH key

◾ In category Connection→SSH→Auth→Credentials enter the path to
your private SSH Key (see page 14) (see figure 4.11).

LiDO3 | First Contact page 31 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.11: Mandatory: Enter the path and filename to your personal private SSH-key

◾ In category Connection→Data enter your LiDO3 username (see figure 4.12).
If you do not provide it here, you will be asked for your username every time
your log in (see figure 4.13).

Figure 4.12: Recommended: hardcode your LiDO3 username

LiDO3 | First Contact page 32 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.13: PuTTY will ask for your LiDO3 username if auto-login username in
figure 4.12 is left unconfigured

Once you have made and saved all these changes in a session profile (see figure 4.10),
you can now establish your first encrypted login session to the LiDO3 cluster by clicking
the Open button of the PuTTY configuration dialog.

Figure 4.14: PuTTY will report an unknown identity when connecting for the first time
to a new host and ask for confirmation before proceeding.

If you connect to one of the gateway servers for the first time, you will be asked whether
the key fingerprint of this server is correct. This is done for security reasons to make
sure that this really is one of the servers you want to connect to. Key fingerprints are
long alphanumeric strings which are notoriously difficult to compare. For this, their –
much shorter and for this easier to compare – hash value is calculated (typically using
the cryptographic hash functions MD5 or SHA256, depending on your particular SSH
client) and shown.

LiDO3 | First Contact page 33 of 216

IT & Medien Centrum | LiDO3 | First Contact

The correct key fingerprints are as follows:
For Gateway 1:

$ ssh-keygen -lf <(ssh-keyscan gw01.lido.tu-dortmund.de)
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 SHA256:rG0Cmye6DibyWvaqjHcma6vnwsvTfYATy1JM/O200Ns
↪ gw01.lido.tu-dortmund.de (RSA)

256 SHA256:SxL75DVFyNKVbSMkB1M/fPTy5qcPtWa5M9iHHe9OETU
↪ gw01.lido.tu-dortmund.de (ECDSA)

256 SHA256:lUQLD2VY/pTVpsSPwuUwvHA8jm/tNiGJ+GbaHP9sBPo
↪ gw01.lido.tu-dortmund.de (ED25519)

For Gateway 2:

$ ssh-keygen -lf <(ssh-keyscan gw02.lido.tu-dortmund.de)
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
256 SHA256:sYjJMuRut7jSomxbluWOf0YKE1y5QE5esAQovRBveHo
↪ gw02.lido.tu-dortmund.de (ED25519)

When using an older version of PuTTY, the fingerprints may still be given in the MD5
format instead of the SHA256 format.
For Gateway 1:

root@gw01: /root>ssh-keygen -E md5 -lf <(ssh-keyscan
↪ gw01.lido.tu-dortmund.de)

gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 MD5:a5:e3:b4:7f:cc:53:15:32:89:17:d7:ed:14:d5:6e:9d
↪ gw01.lido.tu-dortmund.de (RSA)

256 MD5:c6:ee:1d:4b:da:c9:dc:6c:86:08:30:14:f8:ff:18:f8
↪ gw01.lido.tu-dortmund.de (ECDSA)

256 MD5:a0:f4:f8:63:e8:79:e5:88:23:2d:1c:44:de:fc:18:81
↪ gw01.lido.tu-dortmund.de (ED25519)

For Gateway 2:

LiDO3 | First Contact page 34 of 216

IT & Medien Centrum | LiDO3 | First Contact

root@gw02: /root>ssh-keygen -E md5 -lf <(ssh-keyscan
↪ gw02.lido.tu-dortmund.de)

gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 MD5:a5:e3:b4:7f:cc:53:15:32:89:17:d7:ed:14:d5:6e:9d
↪ gw02.lido.tu-dortmund.de (RSA)

256 MD5:c6:ee:1d:4b:da:c9:dc:6c:86:08:30:14:f8:ff:18:f8
↪ gw02.lido.tu-dortmund.de (ECDSA)

256 MD5:2f:58:ae:c4:eb:aa:bb:88:cf:5f:a1:fa:fc:49:0b:64
↪ gw02.lido.tu-dortmund.de (ED25519)

If the key fingerprints that PuTTY reports do not match those listed in this
document, do not proceed! Instead contact the LiDO team over the phone, via email
or open a support ticket with the ITMC service desk.
If you have confirmed the correct identity, accept the key with a click on the button
Accept (see figure 4.14).
If you have encrypted your SSH private key with a passphrase, you will now be asked to
enter it (see figure 4.15). There will be no visual feedback on how many and what keys
you type to enter your passphrase. Press the [Enter] key once your have entered
the passphrase.

Figure 4.15: SSH private key, if you chose to encrypt it (recommended!), needs to be
unlocked during login to LiDO3

LiDO3 | First Contact page 35 of 216

IT & Medien Centrum | LiDO3 | First Contact

Now you are logged in to LiDO3. Welcome to the world of high performance comput-
ing.

Figure 4.16: Succesful login to one of the LiDO3 gateways.

You can end the PuTTY session with the command exit.

4.2.2.3 WinSCP

If you only want to copy some files to/from LiDO3, you can skip the Terminal/GUI
solutions and reside to scp, which is copy over SSH21, i.e. an encrypted file transfer
over the network. A widely used scp GUI for Windows is called WinSCP22. It provides
a NortonCommander-like GUI where you can easily transfer files from one side to the
other, literally.
The initial setup consists of converting your SSH private key, adding it to WinSCP and
adding the LiDO3 gateway URL. By default, the login dialog opens directly. If not, it
can be triggered via the button ’New Sessions’ (or ’Neue Sitzung’ if you use German
language settings) and from the menu ’Session’ (’Sitzung’).

21http://en.wikipedia.org/wiki/Secure_Shell
22https://winscp.net/eng/index.php

LiDO3 | First Contact page 36 of 216

http://en.wikipedia.org/wiki/Secure_Shell
https://winscp.net/eng/index.php
http://en.wikipedia.org/wiki/Secure_Shell
https://winscp.net/eng/index.php

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.17: Setting up protocol, server and username and opening advanced settings

Figure 4.18: Enable SSH compression.

LiDO3 | First Contact page 37 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.19: Open private key selection.

Figure 4.20: Select private key.

LiDO3 | First Contact page 38 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.21: Confirm private key conversion.

Figure 4.22: Save converted key file.

LiDO3 | First Contact page 39 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.23: Acknowledge success information.

Figure 4.24: Confirm key selection.

LiDO3 | First Contact page 40 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.25: Save connection setup and open connection.

After you are connected, you can copy files around by drag-drop moving them from
one window to the other or using menu entries and keyboard shortcuts, respectively.
You can move (i.e. up-/download, then delete at source location) files to/from your
local client, move them on the server side to different server-side locations, rename,
edit and delete them.

4.2.2.4 MobaXterm

The MobaXterm Client from Mobatek23 offers a native shell environment for Windows
with a build-in X11 server which allows for a login to the LiDO3 gateways and to start
GUIs remotely.
The steps to connect to LiDO3 via MobaXterm are as follows:
After downloading and installing the MobaXterm client software on your own desktop,
make sure that you are connected to the TU Dortmund University network (either by
an active VPN connection or simply because you are physically at the university).
Next, you start MobaXterm and the first thing you want to do is to create a new user
session.

23https://mobaxterm.mobatek.net/

LiDO3 | First Contact page 41 of 216

https://mobaxterm.mobatek.net/
https://mobaxterm.mobatek.net/

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.26: Mandatory: After starting MobaXterm right click on ’User Sessions’ and
select ’New session’.

In the following screen you can select which type of connection you want for your
session. To connect to LiDO3 you want to select ’SSH’. Now you want to declare your
’Remote host’, i.e. gw02.lido.tu-dortmund.de to connect to gateway02 server, followed
by your username, which is usually your university account (smxxxxxx or mxxxxxxx).

Figure 4.27: Select SSH, fill in the LiDO3 gateway hostname and your login name.

As you need a SSH private key to connect to LiDO3, you can now select ’Advanced
SSH settings’ and check ’Use private key’ and fill in the path to your SSH private key
for which a public key is present on LiDO3. Make sure the ’X11-Forwarding’ is active
to use the build-in X11 server MobaXterm is shipped with.

LiDO3 | First Contact page 42 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.28: Add the path to the SSH private key, check X11-Forwarding.

The provided key must be in the OpenSSH key file format. The propriatory key
file format used by PuTTY (see 30), stored in files with ppk file extension, is not
supported. If you get the error message "no authorization" or "invalid key file type",
you may need to convert your SSH private key first to the OpenSSH key file format.
This is done with the PuTTY tool puttygen or its direct clone, the MobaXterm SSH
Key Generator. Load your existing SSH private key in PuTTY key file format (‘*.ppk‘)
in puttygen and convert it via menu Conversions→Export OpenSSH key
to a new file.

LiDO3 | First Contact page 43 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.29: Converting the private key from ppk to OpenSSH key format.

After you successfully configured your session, you can now select it from your left
hand side menu and double click on it.

Figure 4.30: Select your just created user session via double-clicking. A new prompt
will open and you will be asked for your passphrase.

Alternatively, you can simply start a local session and enter your ssh command into
the command line, as you would do if you were using a Unix OS.

LiDO3 | First Contact page 44 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.31: Alternatively to creating a user session you can use MobaXterm like
a common terminal you would be using on a Unix OS and enter the ssh command
manually.

4.2.2.5 SSH Cryptonaut

The GUI client software Cryptonaut24 is deprecated and discontinued, but still in use
by some users. The latest beta version 7.0.0.1483 does, until now, support the current
SSH protocol version and is thus still usable, despite dating back to 2017.

If you are not already using this software, please strongly consider using one of
the other SSH clients, that are still maintained and receive security updates.

4.2.3 Starnet FastX
The FastX Client (available for Linux, Windows and MacOS) from Starnet25 offers
a remote graphical login to the LiDO3 gateways. It is also possible to connect via
web-interface.

4.2.3.1 Using the FastX Client

The steps to connect to LiDO3 via FastX are as follows:
After downloading and installing the FastX client software on your own desktop, you
need to make sure that you are inside the University network by VPN or simply by
beeing at the university.
Next you start FastX and click the ’+’-Button in the connections tab.

24https://web.archive.org/web/20171104034936/https://www.ssh.com/
products/ssh-cryptonaut

25https://www.starnet.com/download/fastx-client

LiDO3 | First Contact page 45 of 216

https://web.archive.org/web/20171104034936/https://www.ssh.com/products/ssh-cryptonaut
https://www.starnet.com/download/fastx-client
https://web.archive.org/web/20171104034936/https://www.ssh.com/products/ssh-cryptonaut
https://web.archive.org/web/20171104034936/https://www.ssh.com/products/ssh-cryptonaut
https://www.starnet.com/download/fastx-client

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.32: Mandatory: Click the ’+’-Button in order to enter a new connection.
The host has to be one of our gateway nodes.

After clicking on ok, the connection you have just set up should now appear in the
overview. Make sure that your key agent is active with your ssh-key.

LiDO3 | First Contact page 46 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.33: Select the new connection-option and establish the connection.

In the connection overview, double-click on the line with the connection you want to
establish. If the connection is active, a new window appears. Here you can select one
of your persistent sessions. If the list is blank, you can start a new session pressing the
‘+‘-Button. If there is already a session, then double-click this entry.

LiDO3 | First Contact page 47 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.34: Begin of a new session.

After starting or enter an existing session, you get your window with the remote session
The terminal and other applications can be reached via the Applications menu in the
top left corner of your screen.
In order to get a context menu to control the FastX session, you have to move the
mouse in the upper middle area of the window. There you can pause your session (the
window closes but the session remains active - you can reconnect later from the same
or different computer with FastX).
If you want to terminate the session, you have to click on a small ’x’ on the session
icon in the session overview. You will be asked to terminate the session.
Another feature of FastX is cooperative working, i.e. you can specify other users who
may participate in your session. Furthermore you can also specify whether other users
must first wait to be admitted or whether they are allowed to take control of the
session. This coop feature will described in Section 4.2.3.3.

LiDO3 | First Contact page 48 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.35: To get the context menu of your session, move the mouse to the area,
marked with a red box. The context menu appears.

4.2.3.2 Using FastX without Client in a Browser

You can connect to LiDO3 with FastX with your favorite browser. The disadvantage
of using your browser in contrast using a client is, that your browser does not support
any key-agent and you have to enter the location and the passphrase of your ssh-key.

LiDO3 | First Contact page 49 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.36: Enter the url gw01.lido.tu-dortmund.de:3300 to get this screen. The
prefix gw02 instead of gw01 is possible.

In this menu you have to provide your ssh-key. Click ’manage private keys’. The next
menu appears.

LiDO3 | First Contact page 50 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.37: Managing your private key.

To provide a new private key, you have to click the ’+’-Button. A file menu appears
where you can select your key. Your selected key should now appear in the list of
private keys. After that you can close this menu by clicking ’Done’.
Then you return to the first menu, where you can enter your username. The password
field remains blank. By clicking ’SSH Login’, a prompt to enter the passphrase appears.

LiDO3 | First Contact page 51 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.38: Enter passphrase of your private key.

After that, you can start a new session or you can connect to a paused session.

Figure 4.39: Select a session.

LiDO3 | First Contact page 52 of 216

IT & Medien Centrum | LiDO3 | First Contact

After a session is opened or reopened, you get a new browser tab with your connected
session.
There is a session control menu just like in the client version. Move the mouse to the
upper center area of the tab to get this menu. (Compare Fig. 4.35). To leave the
session without closing, simply close the tab. To enter additional user, which should
participate, select the coop-menu. To terminate the session, you have to select the
first tab, where your session is listed. There you can click on a small ’x’ on the session
icon and you will be asked to terminate the session.

4.2.3.3 Cooperative working with FastX

If you want to show your work to a collegue or you have a problem and you want to
show it to an admin, you can tell FastX which users are allowed to view your session.
Just click on the coop button of your session menu.

Figure 4.40: Select a session.

The added user can select this session in his own session menu in the ‘Session shared
with me’ area. In the client, the added user has to select ‘Session shared with me’
instead of ’my sessions’ in order to view and select this session.

4.2.4 Cendio ThinLinc
The ThinLinc Client (available for Windows and Linux) from Cendio26 offers a remote
graphical login to the LiDO3 gateways.

26https://www.cendio.com

LiDO3 | First Contact page 53 of 216

https://www.cendio.com
https://www.cendio.com

IT & Medien Centrum | LiDO3 | First Contact

The steps to connect to LiDO3 via Thinlinc are as follows:
After downloading and installing the ThinLinc client software on your own desktop,
you need to make sure that you are inside the University network by VPN or simply by
beeing at the university.
Next you start ThinLinc and change the authentification method in the options menu.

Figure 4.41: Mandatory: Open the Options menu, switch to the Security tab and
change the Authentication method from Password to Public key.

Afterwards you can type in the login credentials and click on Connect.

LiDO3 | First Contact page 54 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.42: Fill in the LiDO3 gateway hostname, your login credentials and the path
to your private key.

The provided key must be in the OpenSSH key file format. The ppk PuTTY
file format is not supported. If you get the error message "no authorization" or "invalid
key file type", you may need to convert your private key first. This is done with
the PuTTY tool puttygen. Load your existing private SSH key in PuTTY key
format (‘*.ppk‘) in puttygen and convert it via menu Conversions→Export
↪ OpenSSH key to a new file.

LiDO3 | First Contact page 55 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.43: Converting the private key from ppk to OpenSSH key format.

After your sucessfull login, you need to accept the probably uncached server key men-
tioned before and type in your ssh key password.
Click forward in the welcome screen and select Gnome Desktop Classic in the GUI
selection screen. Afterwards confirm the selection by clicking OK

The Terminal and other applications can be reached via the Applications menu in the
top left corner of your screen.

LiDO3 | First Contact page 56 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.44: The Terminal and other applications can be reached via the Applications
menu in the top left corner of your screen.

To logout correctly, it is not sufficient to simply close the ThinLinc windows but you
need to click on the power-switch icon in the top right corner, on your Username and
on Log Out.

Figure 4.45: To log out correctly, it is not sufficient to simply close the ThinLinc
windows but you need to click on the power-switch icon in the top right corner, on
your Username and on Log Out.

LiDO3 | First Contact page 57 of 216

IT & Medien Centrum | LiDO3 | First Contact

Inside a ThinLinc windows, a menu can be opened with the key F8. This menu
allows to switch between fullscreen and windowed mode and some other things.

4.2.5 Logins to compute nodes and inter-node connections
Once your account application has been approved and your account created, you can
log in to the gateway servers. In general, you can not log in to the compute nodes.
But you can log in to any compute node if and if only you have a Slurm job running
there.27 You can log in from a gateway server to a compute node and from a compute
node to another compute node. Once your Slurm job finishes, your interactive SSH
session there will end, too. Note that your SSH session on a compute node will use
the very same compute cores that your Slurm job got assigned. So, CPU intensive
tasks performed in your SSH session will slow down your application and mess with
any time measurements you might be running as part of your Slurm job.
The first case, SSH from gateway to a compute node, is typically useful to monitor
a simulation and check whether it behaves in the way you expect it to. For example,
you can inspect on a compute node memory usage of your program or whether more
threads are being used by your simulation than the number of compute cores asked
for. The resulting significant amount of CPU time spent in kernel space (due to a
high number of context switches) can significantly reduce the CPU efficiency of your
simulation.
The second case, inter-node connections, are required by some applications that span
multiple compute nodes. They use SSH for the initial communication setup during
program startup. The application started on the first assigned compute node creates
SSH connections to the remaining assigned compute nodes. Some Ansys applications
operate this way.
In order to log in from a gateway to a compute node or from a compute node to
another, public key authentication is required. If you are asked for a password (not the
passphrase possibly securing your private key), you most probably did not provide a
private key or the wrong private key. In this case, SSH automatically skipped forward
to the next authentification method, i.e. password authentification. But on LiDO3,
password authentification is disabled and thus this login method will fail, regardless of
the password you provide.

27Check the column NODELIST in the output of the command squeue --user=$USER
↪ --state=running for the names of the compute nodes assigned to your currently running
Slurm jobs.

LiDO3 | First Contact page 58 of 216

IT & Medien Centrum | LiDO3 | First Contact

There are two ways to enable public key authentication on the compute nodes. Either
you configure the SSH client you use to log in to the gateway servers to enable a
feature called “Agent Forwarding” (with OpenSSH 7.x this can be done by adding the
command line option -o ForwardAgent=yes). Or you can generate a SSH key
pair consisting of a private and a public key for use on LiDO3 only. I.e. a key pair
you do not use anywhere else. (Re-using the key pair by configuring a remote computer
such that the private key stored on LiDO3 allows to log in from LiDO3 to said remote
computer entails the risk of compromising the remote computer if ever LiDO3 would
get compromised.)
In order to generate an additional SSH key pair that allows password-less SSH lo-
gins between LiDO3 gateway servers and compute nodes or between compute nodes,
proceed as follows:28

Step 1)

In a login shell on one of the LiDO3 gateway servers, invoke the following command

$ ssh-keygen -t rsa -b 4096 -f ~/.ssh/id_rsa.lido3intern

You will be prompted for an optional passphrase. Twice, in order to confirm your input.
While it is in general strongly advised to protect a SSH private key with a passphrase,
please do not set a passphrase for this SSH key pair for use on LiDO3 only! Why?
Software like Ansys Mechanical APDL, Ansys Fluent or CFX uses SSH internally during
startup and they will not prompt you for the passphrase. As a result, their initialisation
of the communication network via SSH will fail and these simulation packages will
abort. So, for them a passphrase-protected private key imposes a problem. So, omit
applying a passphrase for the SSH private key by just pressing the enter key when
prompted for the passphrase.29 The command will generate, besides an output along
the following lines

28Please note that the leading dollar sign, $, in the commands listed below are meant as a mere
placeholder for your prompt and should not be entered, too.

29Why is there no security concern when omitting the passphrase for the SSH key pair used on
LiDO3 internally only? Someone that would somehow gain access to your LiDO3 account can already
log in to compute nodes using Agent Forwarding provided that a Slurm job of yours is running there
and has no advantage of using the not passphrase-protected SSH private key stored on LiDO3.
Someone with root privileges can log in to the compute nodes anyway such that this person would
not benefit from being able to access and use your SSH private key stored on LiDO3. But both
statements only hold for as long as the SSH key pair is not used anywhere else. It is, hence, strongly
advised to passphrase-protect SSH private keys that you use to log in to remote computers, regardless
whether they are stored on your local computer or on LiDO3.

LiDO3 | First Contact page 59 of 216

IT & Medien Centrum | LiDO3 | First Contact

Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in
↪ /home/user/.ssh/id_rsa.lido3intern.

Your public key has been saved in
↪ /home/user/.ssh/id_rsa.lido3intern.pub.

The key fingerprint is:
SHA256:[...] user@gw01
The key's randomart image is:
+---[RSA 4096]----+
| + |
| ~ |
| . - .|
| . . ++|
|. . S . .++*|
| o o oo +ooo=|
| o = .*+=o+.|
| + + +o+o.*=*|
| o++E@|
+----[SHA256]-----+

a new SSH key pair consisting of a private and a public key, in the appropriate file
formats "PEM RSA private key" and "OpenSSH RSA public key", respectively.

Use the generated SSH key pair for LiDO3 inter-node connections only and
do not use SSH keys from other systems. In case of a security breach on LiDO3,
those (private) SSH keys might be stolen and used to connection from LiDO3 to other
computer systems. Private SSH keys that allow to log in to multiple systems outside
LiDO3 impose the danger of compromising additional systems outside LiDO3.

Step 2)

Tweak your SSH configuration on LiDO3 to use the new SSH private key by de-
fault when making logins. The easiest way to do this is to create or modify the file
~/.ssh/config. By default, this configuration file does not exist. Verify that the
file ~/.ssh/config does not exist yet by invoking

$ ls ~/.ssh/config

If it does not exist, you will get the following error message

LiDO3 | First Contact page 60 of 216

IT & Medien Centrum | LiDO3 | First Contact

ls: cannot access /home/<your username>/.ssh/config: No such
↪ file or directory

In this case, you can create the file and store the required information in a single step
by simply invoking

$ mkdir ~/.ssh
$ echo "IdentityFile ~/.ssh/id_rsa.lido3intern" > ~/.ssh/config

You can check the contents of the newly created file with either one of the commands

$ cat ~/.ssh/config
$ more ~/.ssh/config
$ less ~/.ssh/config

If the file ~/.ssh/config does exist for you, you are most likely experienced enough
to customize it appropriately with an editor of your choice (on LiDO3, e.g. nedit,
pico, nano, emacs, vim, or on your local computer, additionally transferring the
newly created file to LiDO3 afterwards in the latter case) such that we can refrain
from detailing how to store the following line in the appropriate line:

IdentityFile ~/.ssh/id_rsa.lido3intern

Make sure that the file ~/.ssh/config has file permissions as the SSH client
expects it – otherwise you will get the error message

Bad owner or permissions on /home/[...]/.ssh/config

its content will be completely ignored and you will still not be able to use password-less
logins. Proper file permissions can be imposed by running any of the following three
commands in a shell on LiDO3:

$ chmod u=rw,g=r,o=r ~/.ssh/config
$ chmod 644 ~/.ssh/config
$ chmod g-w ~/.ssh/config

LiDO3 | First Contact page 61 of 216

IT & Medien Centrum | LiDO3 | First Contact

Step 3)

Configure your own SSH setup on LiDO3 such that this newly generated SSH key pair
is used and accepted when attempting to SSH connect to a compute node. Do this
by appending the content of the newly generated SSH public key file,
~/.ssh/id_rsa.lido3intern.pub, to the file ~/.ssh/authorized_keys:

$ cat ~/.ssh/id_rsa.lido3intern.pub >> ~/.ssh/authorized_keys

Again, make sure that the file permissions of ~/.ssh/authorized_keys are more
restrictive than they are by default. Otherwise, password-less, public key-based SSH
logins will silently fail, for no apparent reason. So, next invoke either one of the
following commands:

$ chmod u=rw,g=r,o=r ~/.ssh/authorized_keys
$ chmod 644 ~/.ssh/authorized_keys
$ chmod g-w ~/.ssh/authorized_keys

Step 4 - optional)

In order to make sure that this new, passphrase-less SSH key pair is only used on
LiDO3 and merely for internal logins, you can – using an editor of your choice (on
LiDO3, e.g. nedit, pico, nano, emacs, vim, or on your local computer, addi-
tionally transferring the newly created file to LiDO3 afterwards in the latter case) –
prepend the line you just appended to the file ~/.ssh/authorized_keys with a
from-string. With the prefix

from="10.10.*"

the new SSH key pair will only be accepted for logins from within LiDO3. So, after
editing the file ~/.ssh/authorized_keys in step 3 and 4, its content (see above
for how to view its content with, e.g., the command line tools cat, more or less)
should look something along the lines of

from="10.10.*" ssh-rsa AAAAB3NzaC1yc2EA[....] 5sJ5Qw==
↪ user@gw01

LiDO3 | First Contact page 62 of 216

IT & Medien Centrum | LiDO3 | First Contact

Once you have traversed the steps above, you can try out password-less logins to a
compute node by first requesting, for instance, a small, 5-minute interactive shell from
Slurm via

$ srun --partition=short --nodes=1 --cpus-per-task=1
↪ --time=00:05:00 --pty bash

Once your interactive Slurm job starts on, say, cstd01-001 (and for as long as that
interactive Slurm job is running, in this example for 5 minutes), you should be able to
login - from a different login on a LiDO3 gateway - to that very same compute node
via SSH, too, without being asked for a password or passphrase.
Due to step 2, it is not necessary to tweak your existing Slurm job scripts in any kind
in order for this new SSH key pair to be used implicitly.

The new SSH key pair will not interfere with the pre-existing SSH key pairs
you use to log into LiDO3 itself. The new SSH key pair will never be queried when
connecting from outside to LiDO3. Regardless whether you took the optional step 4
or not.

4.2.6 Troubleshooting
4.2.6.1 Keyfile permissions

The SSH clients are somewhat picky regarding the file permissions of the private key
files and the personal SSH configuration file.
In Linux, you can set the right file permissions via

chmod 600 <file name>

In Windows, you can set the right file permissions via

Icacls <file name> /Inheritance:r
Icacls <file name> /Grant:r "%Username%":"(R)"

LiDO3 | First Contact page 63 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.2.6.2 Getting prompted for a password on login

If you are asked for a password (other then the password securing your private key) you
most probably provided no or the wrong private key. In this case, SSH automatically
skips forward to the next authentification method, i.e. password authentification.
On LiDO3 password authentification is disabled and thus this login method will fail,
regardless of which password you provide in this step.

4.2.6.3 Rejected connections

After a few failed login attempts, your IP address is blocked for 30 minutes to prohibit
brute force attacks. After 30 minutes, connections are accepted again.

4.3 Linux Environment

4.3.1 Working with the Linux shell
If you have never worked with the Linux Shell Bash30 before, you can find more than
one tutorial31 in the internet.

4.3.1.1 Editing files

Working with a Linux Shell and with LiDO3 means working with textfiles. Here is a
list of installed text editors:
◾ vi32

◾ emacs33

◾ gedit34

◾ nedit35

◾ nano36

◾ pico37

30https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
31http://tldp.org/LDP/Bash-Beginners-Guide/html/
32https://en.wikipedia.org/wiki/Vi
33https://en.wikipedia.org/wiki/Emacs
34https://en.wikipedia.org/wiki/Gedit
35https://en.wikipedia.org/wiki/NEdit
36https://en.wikipedia.org/wiki/GNU_nano
37https://en.wikipedia.org/wiki/Pico_(text_editor)

LiDO3 | First Contact page 64 of 216

https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://tldp.org/LDP/Bash-Beginners-Guide/html/
http://tldp.org/LDP/Bash-Beginners-Guide/html/
https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Gedit
https://en.wikipedia.org/wiki/NEdit
https://en.wikipedia.org/wiki/GNU_nano
https://en.wikipedia.org/wiki/Pico_(text_editor)
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://tldp.org/LDP/Bash-Beginners-Guide/html/
https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Gedit
https://en.wikipedia.org/wiki/NEdit
https://en.wikipedia.org/wiki/GNU_nano
https://en.wikipedia.org/wiki/Pico_(text_editor)

IT & Medien Centrum | LiDO3 | First Contact

Choose the one that suits your needs.
Some of the editors might seem rather strange for Windows users and if desired, one
can create and edit the text files locally on the Windows workstation and copy them
via to one of the gateway server or vice versa.

See section 4.9.4 Can I have Visual Studio Code on LiDO3? for the reasons you can’t.

Just keep in mind that the newline38 character is handled differently on Linux
and Windows. You want to use a feature like ASCII mode = newline conversion in
your SSH client software - if available.

4.3.2 Filesystems
4.3.2.1 /home and /work file systems

On LiDO3 there are two file systems available on both gateway servers and all compute
nodes:
◾ /home and
◾ /work

On both of them user quotas are enabled. Available disk space quota and current
quota usage is automatically shown on login.
We would like to point your attention to the different properties of the two file systems
/home and /work available on LiDO3:
◾ /home has a quota of 32 GiB for user data, but its content is backed up on

tape such that in case of a file system problem the /home file system and its
data can be restored. On login, the current quota usage is displayed. It can be
manually queried by running

df -h $HOME

/home is provided by two redundant NFS servers and is hence a network file
system, but not a parallel file system.

38https://en.wikipedia.org/wiki/Newline

LiDO3 | First Contact page 65 of 216

https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

IT & Medien Centrum | LiDO3 | First Contact

/home is read-only, i.e. write-protected on the compute nodes! If the
software you execute on the compute nodes needs to write to the home directory,
you have two options:
◾ Redefine HOME before invoking the command. Bash users can prepend the

actual command with HOME=/work/${USER}.
◾ Create symbolic links in your home directory to an alternate writable loca-

tion. See on page 206 for some examples of already existing software.
◾ /work has different characteristics: it has a default quota of 2 TiB39 for user

data, but the files are not saved externally - due to financial limitations (hu-
man resources, backup capacity and intra-university network bandwidth). It is
provided by several redundant file servers, uses the parallel file system BeeGFS
and has a total size of 1.28 PiB. /work can be read from and written to on
both gateways and all compute nodes. The link in your home directory called
“nobackup” leads to the /work/${USER} directory.
The quota can be manually queried by running

beegfs-ctl --getquota --uid $USER

In case of a severe file system problem the data might get LOST
completely.
This is no mere theoretical risk, on its predecessor cluster LiDOng it has hap-
pened multiple times. Please keep this in mind and backup important files in
/work yourself at regular intervals. If it is technically possible when an emer-
gency situation arises, we will grant a two days window to make backups. Don’t
firmly rely on this chance, though, and keep in mind that when storing terabytes
of data on LiDO3 your network bandwidth might not suffice to transfer all your
data from LiDO3 within two days.

cd /home/<user>/nobackup/<my-app>
sbatch myjob.sh

39Since 2020-05-15 this quota is not only shown but also enforced! Exceptions may be granted
after sending a written justification.

LiDO3 | First Contact page 66 of 216

IT & Medien Centrum | LiDO3 | First Contact

Since it is in the nature of a high performance cluster that many nodes, cores and
processes access data simultaneously on those file systems, the cluster uses a parallel
distributed file system named BeeGFS40.

While beeing a specialist for parallel access patterns, there is also a caveat:
working with many small files and accessing the directory structures (in doing any
equivalent of ls) stresses the parallel file system. Do not do that!

4.3.2.2 Read-only /home directory on compute nodes

X11 To be able to use X Window System software on compute nodes, the X11 magic
cookie needs to be written to/updated in a file named .Xauthority. Typi-
cally, this file is stored in a user’s home directory. To work around the fact that
the /home directory can not be written to on the compute nodes, a workaround
has been set up system-wide, the file /work/${USER}/.Xauthority is
used instead.

GnuPG If you plan to use software that uses gpg to verify the signature of files, please
note that gpg tries to create temporary files in ${HOME}/.gnupg while do-
ing so. In order to have gpg successfully verify signatures on compute nodes, you
need to move the directory ${HOME}/.gnupg to e.g. /work/${USER}/.gnupg
and set a symbolic link to this new location in your home directory instead:

test -d ${HOME}/.gnupg || mkdir ${HOME}/.gnupg
mv ${HOME}/.gnupg /work/${USER}
ln -s /work/${USER}/.gnupg ${HOME}

4.3.2.3 Dealing with the disk space quotas

As stated before in 4.3.2.1, the maximum disk space usage in /home is restricted to
32 GiB and in /work to 2 TiB. If you regularly reach these limits, there are several
steps that might be helpful.
◾ obviously: delete programs, sourcecode and data, that you do not need anymore
◾ move everything that you can easily recover to /work.
◾ move all binaries, your own compilations and third-party programs, to /work
◾ if you have source code checkouts, that you do not change on your own on

LiDO3, move them to /work
40https://en.wikipedia.org/wiki/BeeGFS

LiDO3 | First Contact page 67 of 216

https://en.wikipedia.org/wiki/BeeGFS
https://en.wikipedia.org/wiki/BeeGFS

IT & Medien Centrum | LiDO3 | First Contact

◾ store reproducable application output to /work
◾ move data, that you do not need on LiDO3 in the near future to other sto-

rage sites. This has the benefit of not loosing data on /work on a filesystem
malfunction
◾ use binary/compressed output formats where available. The usual ASCII-based

data storage is very wasteful
◾ compress application output directly in your Slurm script or at least afterwards,

when you have finished your first-level analysis.

4.3.2.3.1 Compressing application data
There are several programs readily available on LiDO3 (gateway and compute nodes)
to compress you application data.

zip:

compress files
zip archive.zip file1 file2
recursively compress complete directories
zip -r archive.zip directory1 directory2
inspect
zipinfo archive.zip
decompress
unzip archive.zip

tar with gzip:

compress files
tar cvzf archive.tar.gz file1 directory2
inspect
tar tvzf archive.tar.gz
decompress
tar xvzf archive.tar.gz

tar with bzip2:

compress files
tar cvjf archive.tar.bz2 file1 directory2
inspect
tar tvjf archive.tar.bz2
decompress

LiDO3 | First Contact page 68 of 216

IT & Medien Centrum | LiDO3 | First Contact

tar xvjf archive.tar.bz2
\textbf{tar with xz:}
\begin{lstlisting}
compress files
tar cvJf archive.tar.xz file1 directory2
inspect
tar tvJf archive.tar.xz
decompress
tar xvJf archive.tar.xz

4.3.2.3.2 du output and the parallel file system BeeGFS

du (abbreviated from d isk usage) is a standard Unix program used to estimate file
space usage, i.e. space used under a particular directory or files on a file system. du,
however, does not work well on the parallel file system BeeGFS: du tends to report too
low values for the files stored under $WORK. In particular for those subtrees in $WORK
that have been created months or years ago and not been accessed for a long time.
The output du reports may change if you were to copy the subdirectory to gauge to
a different file system or a remote location prior and run the very same du command
again.
Instead of du -hs, du -hs --apparent-size or similar, use lido3-quota
or beegfs-ctl --getquota --uid <your-lido3-user-id> to determine
how much file space you are using in $WORK.
For a more fine-grained analysis, have find and awk calculate how much space is
being used by directory subtrees. Example:

find /work/my/dir1 /work/my/dir2 -print0 | xargs -0 stat
↪ --format=%s | awk '{ s+=$1; } END { print s / 1024**3 "
↪ GiB"; }'

4.3.2.4 /scratch file system

If you need to do heavy I/O or parallel processing of data in files, consider using the
/scratch file system. /scratch is a local file system on each node that can’t be
accessed from other machines.

LiDO3 | First Contact page 69 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.46: /home and /work can be accessed from any node, /scratch is only a local
file system.

The workflow would look something like this:
◾ Job starts

◾ Copy data from /work to /scratch
◾ Job runs

◾ Process data on /scratch

◾ Job ends
◾ Copy data from /scratch to /work

It is good practice to create a directory in /scratch consisting of your user
name and job ID as in /scratch/<username>_<job_id> or nestedly as in
/scratch/<username>/<job_id>.
In case your Slurm jobs do not allocate complete compute nodes (e.g. only a few
cores or even only a single one), the Slurm scheduler may start several of your jobs
on the same compute node. They might get started on the same compute node
simultaneously or the run times overlap. If their input data is (partially) identical
and of a considerable size, it might not be possible to copy them to a job-individual
subdirectory in /scratch. In this case, you will face the challenge of ensuring that
only one of your jobs copies the files. If several Slurm jobs would copy the same files

LiDO3 | First Contact page 70 of 216

IT & Medien Centrum | LiDO3 | First Contact

to the same destination, this could result in data corruption in the copied files. The
following code snippet uses a lock file mechanism (in compute science often called
semaphore41) to ensure just that: only one of the potentially many Slurm jobs started
on a single compute node does the actual file transfer, all others wait for the transfer
to finish:

#!/bin/bash
#SBATCH --time=[...]
#SBATCH --nodes=[...]
#SBATCH --ntasks-per-node=[...] --cpus-per-task=[...]
#SBATCH --partition=[...]
#SBATCH [...]

###
Cache input files on local file system. (To avoid straining
the object storage servers of the parallel file system BeeGFS
with repeated random access patterns for these input files and
to maximize file reading speed while your application
runs. (You may even consider creating a temporary ramdisk for
the duration of your Slurm job in case your application does
heavy I/O on small files.)
#
Use a semaphore to allow only one job script at a time to
do the actual file transfer (avoiding data corruption in the
destination directory from otherwise potential concurrent
file transfers).
LOCK_FILE=/scratch/${USER}/input_file_transfer_lock
SOURCE_DIR=/work/${USER}/path/to/your/input/data
DEST_DIR=/scratch/$USER/common_input_data
if [! -d "$(dirname ${LOCK_FILE})"]; then

mkdir -p "$(dirname ${LOCK_FILE})"
fi
trap "rm ${LOCK_FILE} 2>/dev/null" INT TERM EXIT
Try (repeatedly if necessary) to obtain an exclusive lock
exec {NAMED_FILE_DESCRIPTOR}> ${LOCK_FILE}
flock -x -n ${NAMED_FILE_DESCRIPTOR};
while test $? -ne 0; do

printf "%s: %s" "$(date)" "Waiting for lock on ${LOCK_FILE}
↪ to get released."
for i in $(seq 10); do echo -n "."; sleep 1; done; echo
flock -x -n ${NAMED_FILE_DESCRIPTOR};

done
Exclusive lock obtained
if [! -d "${DEST_DIR}" -o $(find ${DEST_DIR}/ 2>/dev/null | wc

↪ -l) -ne $(find ${SOURCE_DIR} | wc -l)]; then

41https://en.wikipedia.org/wiki/Semaphore_(programming)

LiDO3 | First Contact page 71 of 216

https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Semaphore_(programming)

IT & Medien Centrum | LiDO3 | First Contact

printf "%s: %s\n" "$(date)" "Starting to copy files from
↪ ${SOURCE_DIR} to ${DEST_DIR}."
input files are not present in local file system yet.
mkdir -p ${DEST_DIR}
cp -af ${SOURCE_DIR} $(dirname ${DEST_DIR})
Update time stamp of the just copied files to prevent that
system cleanup scripts on LiDO3 automatically remove
them. (They will remove any file in /scratch not modified
within the last two days unless the owner of these files
still runs a Slurm job on this particular compute node.)
find ${DEST_DIR}/ -print0 | xargs -0 touch
printf "%s: %s\n" "$(date)" "Copying finished."

fi
Release lock
flock -u -n ${NAMED_FILE_DESCRIPTOR};

End of input file transfer to /scratch
###

Listing 4.3: File transfer to /scratch with lock file safeguard mechanism

The /scratch partions on all nodes are regularly purged and all files that
have not been modified in the last two days after your job finished are deleted.

4.3.3 Filetransfer between LiDO3 and external computers
The simplest approach is to use ssh, precisely scp, which is in some sense the cp re-
placement from the ssh suite. On an external linux/macos/unix/windows wsl machine,
the command

my_pc# scp -i <path-to-your-private-ssh-key>
↪ <path-to-local-file>
↪ lido-user-name@gw01.lido.tu-dortmund.de:/home/lido-user-name/

copies a file into your home directory on LiDO3. The command

my_pc# scp -i <path-to-your-private-ssh-key>
↪ lido-user-name@gw01.lido.tu-dortmund.de:/home/lido-user-name/some_file
↪ <local-target-directory>

LiDO3 | First Contact page 72 of 216

IT & Medien Centrum | LiDO3 | First Contact

copies a file back to your local computer. The parameter ’-r’ copies complete directories
recursively. See ’man scp’ for further details.
There are also some GUI42 clients for transfering the files back and forth from your
Windows machine, e.g. FileZilla43 and WinSCP44. For both programs, the respective
websites explain how to set up SSH public key authentication45,46.

4.3.4 Shared file access
It is possible to grant other users read and/or write access to your own files and
directories. One common solution to achieve this is by exploiting the group feature
common to all unixoid operating systems.
You can ask the LiDO3 support team to create such a unix group containing multiple
LiDO3 users to grant all of them read/write access on selected files and directories.
Usually, you or any other member of the same unix group will want to create a subdi-
rectory in someone’s home or work directory which is dedicated for this group’s work.
You need to share this directory’s name with your unix group members as they – by
default – can not list the content of your (home/work) directory. They can, however,
once everything is set up, see everything that is stored in said subdirectory.
Technically speaking, if you grant write access to a shared subdirectory, its content –
along with all files and directories underneath it – are owned not only by you, but by
your unix group. For this, the setgid bit47 needs to be set, such that all newly created
files and directories are owned by this unix group, too.
Members of this unix group kann read any file if at least:
◾ The file belongs to the unix group.
◾ For all directories in the hierarchy leading to the, the x-bit is set for the group

(or, if it is not set for the group, it is set for everyone).
◾ The r-bit of this file is set for the group (or, if it is not set for the group, it is

set for everyone)
42https://en.wikipedia.org/wiki/Graphical_user_interface
43https://filezilla-project.org/
44http://winscp.net/
45https://wiki.filezilla-project.org/Howto
46https://winscp.net/eng/docs/guide_public_key
47https://en.wikipedia.org/wiki/Setuid

LiDO3 | First Contact page 73 of 216

https://en.wikipedia.org/wiki/Graphical_user_interface
https://filezilla-project.org/
http://winscp.net/
https://wiki.filezilla-project.org/Howto
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Graphical_user_interface
https://filezilla-project.org/
http://winscp.net/
https://wiki.filezilla-project.org/Howto
https://winscp.net/eng/docs/guide_public_key
https://en.wikipedia.org/wiki/Setuid

IT & Medien Centrum | LiDO3 | First Contact

Example:
Users sma and smb are members of the group uxg. Group memberships can easily
be checked by issuing the command id, optionally providing a single username, e.g.
id smb. User smb wants to use a file in the home directory of user sma.

$ ls -lad /home
drwxr-xr-x 281 root root 282 Jul 10 16:09 /home

^
|
+---- active x-bit allows access for smb

smb is neither the owner of the directory /home (which is root) nor member of
the unix group root), but does belong to the category other The x-bit is set for the
topmost directory /home for category other such that every valid user, including smb,
can enter this directory. (See Wikipedia on Unix Permissions48 for details.) He can
even issue an ls as the r-bit is set for other for this directory, too.
The next directory in the hierarchy towards the home directory of user smb is /home/sma.
Because the x-bit is set for other for this directory, the user smb can enter this direc-
tory, too. Nevertheless, he cannot see the content of this directory, due to the missing
r-bit for both the group triple and other triple.

$ ls -lad /home/sma
drwx-----x 7 sma sma 32 Jul 12 13:31 /home/sma

^
|
+---- active x-bit allows access for smb

Finally, the directory /home/sma/shared-work, which shall contain the actual
shared files, belongs to the unix group uxg. The x-bit for this group allows user smb
to enter this directory.

$ ls -lad /home/sma/shared-work
drwxr-x--- 4 sma uxg 4 Jul 12 13:50 /home/sma-shared-work

Setting the setgid bit via

$ chmod g+s /home/sma/shared-work

48https://en.wikipedia.org/wiki/File-system_permissions

LiDO3 | First Contact page 74 of 216

https://en.wikipedia.org/wiki/File-system_permissions
https://en.wikipedia.org/wiki/File-system_permissions

IT & Medien Centrum | LiDO3 | First Contact

does not require root privileges, it can be added by any user. As stated on the previous
page, the setgid bit triggers that all newly created files and directories will be owned by
the very same unix group /home/sma/shared-work belonged to at the time those
extra files and directories got created. Once the setgid bit has been set additionally,
an s will be listed instead of an x for the group x-bit:

$ ls -lad /home/sma/shared-work
drwxr-s--- 4 sma uxg 4 Jul 12 13:50 /home/sma-shared-work

The r-bit for the group uxg allows user smb to see the contents of this directory, too.
Other users that are neither member of the unix group uxg nor the user sma (a.k.a.
the owner) itself cannot see the contents or even enter the directory, because the r-bit
is not set for the third other triple.

If sma whould ever change the name of the directory sma-shared-work, he
would need to tell this to the other members of the unix group uxg, because they
cannot find out the new name in /home/sma themselves. Given that they are not
able to see its contents at all.
All newly created files and directories in and beneath /home/sma-shared-work
will be read- and writeable for the user sma and all members of the group uxg. This
(default) behaviour is controlled by the so-called umask49 and its current values.

$ umask -S
u=rwx,g=rwx,o=rx

If, for example, you wanted to change the default setting such that other members of
the group uxg can only read, but not write to newly created files, you could issue the
command

umask -S u=rwx,g=rx,o=rx

once or add it to your ~/.bashrc file for persistent impact.

49https://en.wikipedia.org/wiki/Umask

LiDO3 | First Contact page 75 of 216

https://en.wikipedia.org/wiki/Umask
https://en.wikipedia.org/wiki/Umask

IT & Medien Centrum | LiDO3 | First Contact

4.3.5 Software modules, environment modules
The software and tools needed for development and job execution are organized as
environment modules, commonly abbreviated to modules. Modules dynamically modify
the users environment and make it possible to
◾ get a clean environment with no software visible at all,
◾ install concurrent versions of the same software and
◾ use software that usually excludes each other.

Working with those modules is done with the module50 command.

4.3.5.1 Loaded modules

The command module list shows the modules that are currently loaded in your
environment:

$ module list
No Modulefiles Currently Loaded.

4.3.5.2 Available modules

To list the modules that can be potentially loaded, enter the command module
↪ avail.

$ module avail

--- /usr/share/Modules/modulefiles ---
dot module-git module-info modules null use.own

---- /cluster/sfw/modulefiles ---
abaqus/2022-hotfix2 gcc/6.4.0 openblas/0.2.19
clang/4.0.1 gcc/7.1.0
↪ openmpi/mpi_thread_multiple/cuda/2.1.1

(...)

4.3.5.3 Load a module

To load a module into your environment, enter the command module add, followed
by the <MODULE_NAME>:

50http://linux.die.net/man/1/module

LiDO3 | First Contact page 76 of 216

http://linux.die.net/man/1/module
http://linux.die.net/man/1/module

IT & Medien Centrum | LiDO3 | First Contact

$ module add clang
$ module list
Currently Loaded Modulefiles:

1) clang/4.0.1

4.3.5.4 Unload a module

To unload a specific module, use the command module rm, followed by the
<MODULE_NAME>:

$ module rm clang
$ module list
No Modulefiles Currently Loaded.

To unload all modules, use module purge.
Further documentation of the module concept is available at the HLRN51.

Important: in order to make the activated modules available on the compute
nodes (during execution time) as well, the command module add must be included in
the user’s shell init files (e.g. .bash_profile or job script).

4.3.5.5 Modules in job scripts

If you run a job that depends on modules, please ensure that these modules are included
in the user’s shell init files (e.g. .bash_profile), so that the job has a proper
environment set up when being executed on the compute nodes! Alternatively, the
following lines are to be included in the Slurm job script before starting the application:

Clean module environment
module purge
Load modules needed
module load [compiler modules][MPI modules]

4.3.5.6 Compiler modules

Compilers and libraries are selected and activated via module commands (see section
4.3.5 Software modules, environment modules).

51https://www.hlrn.de/home/view/System2/ModulesUsage

LiDO3 | First Contact page 77 of 216

https://www.hlrn.de/home/view/System2/ModulesUsage
https://www.hlrn.de/home/view/System2/ModulesUsage

IT & Medien Centrum | LiDO3 | First Contact

Table 4.1: Compilers

Compiler Module Commands
GNU Compiler Collection module add gcc gcc, g++, gfortran
Intel Studio XE module add intel icc, icpc, ifort
Portland PGI compiler module add pgi pgcc, pgCC, pgf77, pgf95
Oracle Solaris Studio module add oraclestudio suncc, sunCC, sunf77, sunf95
Clang compiler module add clang clang, clang++

If you want to compile a parallel program using MPI you can use the corresponding
compiler wrappers from the Open MPI modules.
The naming scheme for the openmpi modules is as follows:
openmpi/THREADINGSUPPORT/CUDASUPPORT/OPENMPIVERSION

with
◾ THREADINGSUPPORT: whether build with thread multiple support :52

mpi_thread_multiple/no_mpi_thread_multiple
◾ CUDASUPPORT: whether to enable the build-in support for data transfers be-

tween the GPUs and the network controller without explicit memory transfer
statements.
◾ OPENMPIVERSION: the actual Open MPI version, e.g. 4.0.1

For a complete overview of all modules available please see:

module avail openmpi

4.3.6 Installing your own software
Many software packages can be installed in your own /home or /work directory.
Admittedly, sometimes you are required to install – as a prerequisite for the software
- certain libraries locally as well. Usually, you do not need any supervisor or admin
privileges to do so.
In contrast to most manuals, which describe a single-user computer setting where one
user is using one computer, LiDO3 is a multi-user system and thus some steps to install
a software package will differ from common documentation.

52https://www.open-mpi.org/doc/current/man3/MPI_Init_thread.3.php

LiDO3 | First Contact page 78 of 216

https://www.open-mpi.org/doc/current/man3/MPI_Init_thread.3.php
https://www.open-mpi.org/doc/current/man3/MPI_Init_thread.3.php

IT & Medien Centrum | LiDO3 | First Contact

First, you have no superuser rights nor any sudo rights. So, instead of installing any
application system-wide via root or sudo commands, you need to limit yourself to an
installation in your own directories. This implies especially no usage of commands like
apt, apt-get or yum and nothing starting with sudo.
Instead of that, you need to search for installation modes called ’local’ or ’single-user’
or possibilities to change the ’installation target directory’ or similar terms.
In the following we depict some common installation routines and how they need to
be modified for local installations.
If the software you want to install happens to absolutely fail for a user-level installation,
feel free to ask the LiDO3 team (see section 4.8) for additional support.

4.3.6.1 configure-make-install

Most classic Unix/Linux software packages use GNU Autotools53 (aclocal, autoconf,
automake) for their build system. As a result, the software can be compiled and in-
stalled from its source code in four steps:
◾ configure
◾ make
◾ make check
◾ make install

The first step lays the proper groundwork for all following steps. The second command
builds the actual binaries according to the rules determined in the first step. The third
step optionally tests the created binaries while the last instruction copies all files to
their final destinations. Usually, the configure script provides some informations on the
available command line parameters by issuing

./configure --help

You want to look out for something like ’prefix’ which usually describes the directory
where all files will finally be installed. Thus, simply create your own application in-
stallation directory and let --prefix=$HOME/my_app_directory hint to this
directory.

53https://en.wikipedia.org/wiki/Configure_script

LiDO3 | First Contact page 79 of 216

https://en.wikipedia.org/wiki/Configure_script
https://en.wikipedia.org/wiki/Configure_script

IT & Medien Centrum | LiDO3 | First Contact

For cmake-based54 build systems, you can choose a different installation location by
passing the command line option
-DCMAKE_INSTALL_PREFIX:PATH=$HOME/my_app_directory.
Afterwards, make install should install all necessary files (including binaries, li-
braries and manpages) under this directory in your home or work directory. Note
that you must not use the common phrase sudo make install but rather just
make install.
If the configure script has no means to change the installation directory, it is often
suficcient to stop after the make check step and use the binary created in the build
directory as is. If its not in the top-most directory, look out for something called bin
or a build subdirectory.
Finally you might want to add the installation directory to your $PATH environment
variable.

4.3.6.2 pip, venv, virtualenv & conda

pip is a widespread tool to install additional Python modules. To install these modules
into your home directory, you need to use the parameter --user on every pip call.
Use either one of

python3 -m pip install --user <package_name>
pip3 install --user <package_name>

Note that this will install to ${HOME}/.local/lib/python<pythonversion>.
On LiDO3, a user’s home directory gets set up such that ${HOME}/.local is in
fact a symbolic link to ${WORK}/.local. So, the Python packages seem to have
been installed to a user’s home directory, but in fact they are stored in the parallel
file system. This has the benefit that a user can install additional Python packages as
part of a Slurm job55 Additionally, the performance accessing these files from several
dozen or hundred concurrently running Slurm jobs is a lot better than if they were
stored in a user’s ${HOME} directory (which is served by two NFS servers instead of a
high-performant parallel file system). There is a drawback, however: Python packages
getting in fact installed to the parallel file system means that they will not be backed
up automatically.

54https://cmake.org/
55Remember that only ${WORK} can be written to from the compute nodes while ${HOME} can

only be written to from the gateway servers; see section 4.3.2.1.

LiDO3 | First Contact page 80 of 216

https://cmake.org/
https://cmake.org/

IT & Medien Centrum | LiDO3 | First Contact

You may want to organize your Python modules required for different projects in so-
called virtual environments. Read up on venv56 and virtualenv57. These external sites
describe their use much better than we ever could. There are a number of video
tutorials on why and how to use virtual environments in Python available on sites like,
e.g., YouTube, too.
When installing packages, pip installs dependencies in a recursive, serial loop. No
effort is made to ensure that the dependencies of all packages are fulfilled simulta-
neously. This can lead to environments that are broken in subtle ways, if packages
installed earlier in the order have incompatible dependency versions relative to pack-
ages installed later in the order. venv and virtualenv serve to a good end to
avoid this. But it is still up to you as a user to ensure that your virtual environment
does not get messed up by updating or installing a Python package.
In contrast, conda uses a satisfiability (SAT) solver to verify that all requirements of
all packages installed in an environment are met. This check can take extra time but
helps prevent the creation of broken environments. As long as package metadata about
dependencies is correct, conda will predictably produce working environments.58 In or-
der to use conda with Python versions newer than 3.7, make sure to load on LiDO3 an
environment modulefile (see 4.3.5) matching the pattern python/3*conda*. Install
a package like, e.g., requests by replacing <package_name> with requests
and name your new conda environment in a distinguishable manner:

conda create --no-default-packages --name <customname>
↪ <package_name>

conda installs to ${HOME}/.conda by default. On LiDO3, similiar to pip, a user’s
home directory gets set up such that ${HOME}/.conda is in fact a symbolic link to
${WORK}/.conda. This has the same advantages and the disadvantage mentioned
in the previous paragraph for pip.

56https://docs.python.org/3/library/venv.html
57https://virtualenv.pypa.io/en/latest/
58For more details that pip and conda have in common and where they differ, see the official

documentation59.

LiDO3 | First Contact page 81 of 216

https://docs.python.org/3/library/venv.html
https://virtualenv.pypa.io/en/latest/
https://docs.python.org/3/library/venv.html
https://virtualenv.pypa.io/en/latest/
https://www.anaconda.com/blog/understanding-conda-and-pip
https://www.anaconda.com/blog/understanding-conda-and-pip

IT & Medien Centrum | LiDO3 | First Contact

4.4 Resource management
LiDO3 uses the Slurm Workload Manager 60 to control batch jobs and cluster resources.
Slurm takes care of running the users’ jobs on allocated nodes and keeps track of the
users’ processes. It is not possible to start processes directly on individual compute
nodes, except as part of interactive Slurm jobs. Long-running, cpu-hungry processes
running directly on the gateway servers are killed without further notification.
Slurm comes with a built-in scheduling system with the purpose of finding and allocat-
ing the necessary resources for a user’s job and organizes the usage between different
users and jobs taking scheduling policies, dynamic priorities, reservations, and fairshare
capabilities into account.
The entities managed by Slurm include:
nodes are the compute resource in Slurm.
partitions group nodes into logical – possibly overlapping – sets.
jobs allocate resources – inside a partition – to a user for a specified amount

of time.
job steps are sets of – possibly parallel – tasks within a job (see page 195).
tasks The actual runing code.

60https://slurm.schedmd.com/

LiDO3 | First Contact page 82 of 216

https://slurm.schedmd.com/
https://slurm.schedmd.com/

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.47: Slurm entities.

“The partitions can be considered job queues, each of which has an assortment of
constraints such as job size limit, job time limit, users permitted to use it, etc. Priority-
ordered jobs are allocated nodes within a partition until the resources (nodes, proces-
sors, memory, etc.) within that partition are exhausted. Once a job is assigned a
set of nodes, the user is able to initiate parallel work in the form of job steps in any
configuration within the allocation. For instance, a single job step may be started that
utilizes all nodes allocated to the job, or several job steps may independently use a
portion of the allocation.”

— Quoted from Slurm Quick Start User Guide

LiDO3 | First Contact page 83 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.4.1 Partitions
There are different partitions available on the LiDO3 cluster.

4.4.1.1 Standard partitions

The vast majority of compute nodes is represented via the standard public partitions:

Table 4.2: Standard partitions

Queue max. walltime remarks
short 02:00:00 —
med 08:00:00 —
long 2-00:00:00 —
ultralong 28-00:00:00 no GPU or "non-blocking" nodes
testpart 02:00:00 use when instructed by LiDO3 ad-

ministrators

These are used for all kinds of jobs and are mainly separated by the maximum walltime
allowed per job.

4.4.1.2 Faculty partitions

These partitions represent hardware that was later added to LiDO3 and financed from
individual faculties or institutes. The access to this hardware is generally available to
everyone, but restricted to a maximum job walltime of two hours via the ext_*_norm
partitions. Further usage is restricted to members of the corresponding faculties or
institutes via the ext_*_prio partitions.

Table 4.3: Partitions with faculty hardware

Queue max. walltime remarks
ext_phy_prio 28-00:00:0 Xeon Phi “KNL”
ext_phy_norm 02:00:0 Xeon Phi “KNL”
ext_iom_prio 28-00:00:0 ext_iom_prio group members only
ext_iom_norm 02:00:00 —
ext_trr188 28-00:00:0 ext_tr188 group members only
ext_vwl_prio 28-00:00:0 ext_vwl_prio group members only
ext_vwl_norm 02:00:0 —
ext_math_prio 28-00:00:0 ext_math_prio group members only
ext_math_norm 02:00:0 —

LiDO3 | First Contact page 84 of 216

IT & Medien Centrum | LiDO3 | First Contact

ext_chem_prio 28-00:00:0 ext_chem_prio group members only
ext_chem_norm 02:00:0 —
ext_biochem_prio 28-00:00:0 ext_biochem_prio group members

only
ext_biochem_norm 02:00:0 —
ext_InfCI 28-00:00:0 ext_infci group members only
ext_chem2_prio 28-00:00:0 ext_chem2_prio group members only
ext_chem2_norm 02:00:0 —
ext_ace_prio 8-00:00:0 ext_ace_prio group members only

4.4.1.3 slurm command sinfo

The command sinfo provides an overview over the partitions.

Figure 4.48: Gathering information about the partitions.

LiDO3 | First Contact page 85 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.4.2 Slurm job submission
A job is in principal the specification of the ’what’ and ’where’ shall be executed on
the cluster. Working with jobs is done by using Slurm commands that describe the
resource characteristics of the job, e.g. number of nodes, processor cores needed and
Walltime. This can be done interactively from the shell or in a job script.
To start a job in Slurm, it must be put into a Partitions. This is done with one of
these three commands:
srun “Run a parallel job on cluster managed by Slurm. If necessary, srun will first

create a resource allocation in which to run the parallel job.”
— Quoted from the srun manpage.

srun is typically used to start jobsteps inside a shell script that was launched
with sbatch. This way the code for preparing the job and clean-up afterwards
can run even if a job is terminated.

sbatch “sbatch submits a batch script to Slurm. The batch script may be given to
sbatch through a file name on the command line, or if no file name is spec-
ified, sbatch will read in a script from standard input. The batch script may
contain options preceded with "#SBATCH" before any executable commands in
the script.
sbatch exits immediately after the script is successfully transferred to the Slurm
controller and assigned a Slurm job ID. The batch script is not necessarily granted
resources immediately, it may sit in the queue of pending jobs for some time be-
fore its required resources become available.
By default both standard output and standard error are directed to a file of the
name "slurm-%j.out", where the "%j" is replaced with the job allocation
number. The file will be generated on the first node of the job allocation. Other
than the batch script itself, Slurm does no movement of user files.

When the job allocation is finally granted for the batch script, Slurm runs a
single copy of the batch script on the first node in the set of allocated nodes. ”

— Quoted from the sbatch manpage.

salloc “salloc - Obtain a Slurm job allocation (a set of nodes), execute a command,
and then release the allocation when the command is finished.”

— Quoted from the salloc manpage.

Partitions with long configured walltimes are popular from the users view but on the
other hand they are somehow an unloved child from the cluster administrators per-
spective.

LiDO3 | First Contact page 86 of 216

IT & Medien Centrum | LiDO3 | First Contact

◾ When you as a user put a job inside a partition with a long configured walltime,
chances are high that you have to wait quite a long time before your job gets
even started. Statistics teaches us that the average waiting time is half of the
maximum configured walltime per partition.
◾ The same goes for maintenance windows. We have to drain those partitions

(i.e. starting of jobs is prohibited, submissions of jobs is still possible) very early
to make sure that not too many jobs are still running when we shut down the
cluster. All jobs still running need to be canceled when the maintenance starts.
Closing those partitions early can have a negative impact on the utilization of the
cluster: with long running jobs ending one by one and no new long running jobs
being allowed to start, compute nodes may become idle if not enough requests
are made for partitions with shorter maximum walltimes that are still open.

◾ In case of an emergeny shutdown of the cluster all currently running
jobs will get canceled. This, obviously, translates to data loss for all those jobs.
In a worst case scenario all calculated data from long running jobs gets lost
maybe just a few minutes before its planned end of runtime.

This is no mere theoretical risk, unscheduled emergency downtimes have hap-
pened before.

So, please consider to use checkpointing in your jobs and in your code in a way that
enables you to restart a canceled job and resume the work after the last checkpoint.
And while you are at it, think about breaking your long running job up in to smaller
parts that can run one after another in a partition with a shorter maximum walltime.
Best aim for under two hours, so your job(s) will fit in the short partition.
The forthcoming cluster LiDO4 will – like most HPC clusters – probably not provide
partitions with a walltime greater than 24 hours.

4.4.2.1 Slurm with serial, threaded or MPI-based programs

To allocate and use the resources of the cluster (especially the compute nodes and their
processors and memory), one has to declare the desired amount in advance. Within a
Slurm job script or via corresponding command line options to the commands sbatch,
salloc or srun. As soon as sufficient resources are available, Slurm will then start
your job, assigning it the requested resources, but Slurm will prevent the use of any
non-allocated resource. You can not, for example, use any processor’s core that you
have not asked for when submitting your Slurm job.

LiDO3 | First Contact page 87 of 216

IT & Medien Centrum | LiDO3 | First Contact

The first step when planning your resource usage is to evaluate how many ranks or
tasks (i.e. independently running programs) you want to start in one job and how
many threads each of this ranks will use.
The next step is to use the following three parameters in conjunction with either one of
sbatch, salloc or srun to tell Slurm how many resources your batch or interactive
job needs.
◾ --nodes: The number of compute nodes you want to use.61

◾ --ntasks-per-node: The number of ranks or tasks that you want to run
on each node.62

◾ --cpus-per-task: The number of threads that each of your ranks or tasks
will start.63

If you use a multithreaded program and no additional parallelising strategy – i.e.
if you are not using a hybrid parallelisation by combining threads and a MPI library –,
your program will only be able to use a single compute node! Even if your Slurm job
script asks for more than one compute node (via --nodes=X with X> 1) this will not
make your program run faster: Your program will run on the first assigned compute
node and all other compute nodes assigned to your Slurm job will remain idle! If you
were to start your program in the Slurm script by prepending the srun command to
the program name, Slurm would start your program on every single compute node such
that multiple instances of your program would run simultaneously, read from the same
input files and write to the same output files. Typically, the resulting output files will
be useless.

If you use a multithreaded program and allocate only one cpu per task, all of your
threads will be pinned to one single cpu core and thus your program will run slower
then if you would not have used multithreading at all.
There exist many more configuration options that are best described by SchedMD
in their CPU Management User and Administrator Guide64 and Support for Multi-
core/Multi-thread Architectures65.
The memory allocation and management is described in section 4.4.8

61See also page 113.
62See also page 114.
63See also page 113.
64https://slurm.schedmd.com/cpu_management.html
65https://slurm.schedmd.com/mc_support.html

LiDO3 | First Contact page 88 of 216

https://slurm.schedmd.com/cpu_management.html
https://slurm.schedmd.com/mc_support.html
https://slurm.schedmd.com/mc_support.html
https://slurm.schedmd.com/cpu_management.html
https://slurm.schedmd.com/mc_support.html

IT & Medien Centrum | LiDO3 | First Contact

4.4.3 Interactive jobs
4.4.3.1 srun - interactive execution and jobsteps

Slurm offers the possibility to execute jobs interactively. Execution of srun with the
command line option --pty bash results in Slurm reserving the requested node –
by using salloc under the hood (see page 91) – and starts bash on that node with
a login prompt due to the --pty option and waits for its execution. Since no partition
was given, the default short ist used. The user can then start his program from that
interactive shell.
Example session:

[<username>@gw01 ~]$ srun --pty bash
[<username>@cstd01-214 ~]$ echo $SLURM_TASK_PID
163545
[<username>@cstd01-214 ~]$ exit
[<username>@gw01 ~]$

As soon as the walltime is exceeded, the shell is automatically terminated!
Other options to srun include number of nodes, Walltime etc., see also section
SBATCH statements inside of Slurm job scripts.
Example session with 4 nodes and 3 tasks per node:

[<username>@gw01 ~]$ srun --nodes=4 --ntasks-per-node=3 --pty bash
[<username>@cstd01-214 ~]$ echo $SLURM_TASK_PID
166178
[<username>@cstd01-214 ~]$ exit
exit
[<username>@gw01 ~]$

If the --pty option is omitted, no login prompt will be given and any input will get
run 12 = (–nodes=4) × (–ntasks-per-node=3) times.
Example session with multiple times:

[<username>@gw01 ~]$ srun --nodes=4 --ntasks-per-node=3 bash
there is no prompt, so enter blindly:
echo $SLURM_TASK_PID
121395

LiDO3 | First Contact page 89 of 216

IT & Medien Centrum | LiDO3 | First Contact

104316
105574
167463
121396
104317
121397
104318
167464
105575
167465
105576
exit
[<username>@gw01 ~]$

The following shell script demoscript.sh is used to start a job non-interactive:

#!/bin/bash -l
echo "START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID
↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"

sleep 60
echo "STOP on $SLURMD_NODENAME"

Example session:

[<username>@gw01 ~]$ srun --nodes=2 --tasks-per-node=4
↪ demoscript.sh

START SLURM_JOB_ID 10894 (SLURM_TASK_PID 173171) on cstd01-214
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 126888) on cstd01-215
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 173173) on cstd01-214
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 126889) on cstd01-215
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 173174) on cstd01-214
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 126891) on cstd01-215
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 173172) on cstd01-214
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 126890) on cstd01-215
STOP on cstd01-214
STOP on cstd01-214
STOP on cstd01-214
STOP on cstd01-215
STOP on cstd01-214
STOP on cstd01-215
STOP on cstd01-215
STOP on cstd01-215
[<username>@gw01 ~]$

LiDO3 | First Contact page 90 of 216

IT & Medien Centrum | LiDO3 | First Contact

Note that the execution with srun blocks your session. Only after demoscript.sh
is run 8 = (--nodes=2) × (--ntasks-per-node=4) times, you return to your login prompt.

If you close your SSH session, all jobs started by srun – directly from your shell
– will be terminated!

4.4.3.2 salloc - Allocate nodes

Resources for a job can be allocated in real time with the command salloc. Those
allocated resources are typically used to spawn a shell and – interactively – execute
srun commands to launch parallel tasks.
Whereas srun uses salloc under the hood to acquire the needed resources, using
salloc as a discrete command enables you to initiate different job steps inside an
allocated set of nodes.
To allocate 10 nodes using the --exclusive option so no other users will be running
jobs on the allocated nodes at the same time, enter

[<username>@gw01 ~]$ salloc --nodes=10 --exclusive
salloc: Granted job allocation 14008
salloc: Waiting for resource configuration
salloc: Nodes cstd01-[001-010] are ready for job

Please note that once Slurm “grants a job allocation”, i.e. when the prompt
returns after you submitted via salloc, you are still logged in to one of the gateway
servers. Confirm this by invoking the command hostname. You can switch to the
compute nodes that got allocated to your interactive Slurm job and run an interactive
shell there with

srun --pty bash -l

If you exit this shell before your allocated interactive Slurm job ran out of time, via
exit or the Ctrl-d command line shortcut, your Slurm job allocation will continue.
You can re-login at any time later until the alloted amount of time has expired. This
approach is the closest you can get with the Slurm scheduler on a compute cluster to
working on your own workstation.

LiDO3 | First Contact page 91 of 216

IT & Medien Centrum | LiDO3 | First Contact

On the other hand, you can also opt to stay logged in on one of the gateway servers
and start several interactive jobs simultaneously, e.g. start 3 job steps on those 10
allocated nodes:

1. using 2 nodes (--nodes=2) starting with the first node (--relative=0) of
the allocated range.

2. using 4 nodes (--nodes=4) starting with the third node (--relative=2)
of the allocated range.

3. using 2 nodes (--nodes=4) starting with the seventh node (--relative=6)
of the allocated range.

[<username>@gw01 ~]$ srun --nodes=2 --relative=0 --jobid=14008
↪ /usr/bin/sleep 300&

[<username>@gw01 ~]$ srun --nodes=4 --relative=2 --jobid=14008
↪ /usr/bin/sleep 300&

[<username>@gw01 ~]$ srun --nodes=4 --relative=6 --jobid=14008
↪ /usr/bin/sleep 300&

Since no --time option was used with salloc, the allocation will last as
long as the timelimit of the partition. Further job steps can be initiated during that
timespan.
Allocations can also be used to start a session with the X Window System.

[<username>@gw01 ~]$ salloc --nodes=1 --exclusive
↪ --constraint=cstd01

salloc: Granted job allocation 14037
salloc: Waiting for resource configuration
salloc: Nodes cstd01-003 are ready for job
[<username>@gw01 ~]$ ssh -X cstd01-003
Warning: Permanently added 'cstd01-003,10.10.3.3' (ECDSA) to the

↪ list of known hosts.
[<username>@cstd01-003 ~]$ start-my-x-program
[<username>@cgpu01-003 ~]$ exit
logout
Connection to cgpu01-003 closed.
[<username>@gw01 ~]$ scancel 14037
[<username>@gw01 ~]$ salloc: Job allocation 14037 has been
↪ revoked.

LiDO3 | First Contact page 92 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.4.4 Batched job script execution
If you do not want to submit your jobs details by hand and stay in front of the terminal
everytime, you can wrap the needed information into a job script for later execution.
A job script is basically a shell script that contains Slurm statements in the header
section. The rest of the script is code that should be executed AKA the job itself.

#!/bin/bash -l

#SBATCH --partition=short
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=3
#SBATCH --time=2:00
#SBATCH --mem-per-cpu=100
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/job.out.txt
...some code...

4.4.4.1 sbatch - Submit a job script

A script can be submitted to the batch system with the command sbatch, followed
by <SCRIPT_NAME>. By using salloc under the hood (see page 91) the requested
nodes are reserved and used for job execution.

sbatch my_submit_script.sh

Example of a job script:

#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=3
#SBATCH --time=0:30
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID \
(SLURM_TASK_PID $SLURM_TASK_PID) on $SLURMD_NODENAME"
echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"
srun /home/<username>/workerscript.sh &
wait
echo "sbatch: STOP"

LiDO3 | First Contact page 93 of 216

IT & Medien Centrum | LiDO3 | First Contact

The job script spawns 12 job steps, each calling workerscript.sh:

#!/bin/bash -l
echo "worker ($SLURMD_NODENAME): start"
echo "executing SLURM_JOB_ID $SLURM_JOB_ID \
(SLURM_TASK_PID $SLURM_TASK_PID) \
on $SLURMD_NODENAME"
sleep 10
echo "worker ($SLURMD_NODENAME): stop"

Executing the job script:

[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 11283

waiting 10 seconds

[<username>@gw01 ~]$ cat /work/<username>/demo.out.txt
sbatch: START SLURM_JOB_ID 37170 (SLURM_TASK_PID 68044) on
↪ cstd01-205

sbatch: SLURM_JOB_NODELIST cstd01-[205-208]
sbatch: SLURM_JOB_ACCOUNT itmc
worker (cstd01-206): start
worker (cstd01-208): start
worker (cstd01-205): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 68077) on cstd01-205
worker (cstd01-207): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 66025) on cstd01-206
worker (cstd01-208): start
worker (cstd01-205): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 68078) on cstd01-205
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 72998) on cstd01-207
worker (cstd01-206): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 82054) on cstd01-208
worker (cstd01-205): start
worker (cstd01-207): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 66026) on cstd01-206
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 82053) on cstd01-208
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 68079) on cstd01-205
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 72999) on cstd01-207
worker (cstd01-206): start
worker (cstd01-208): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 82055) on cstd01-208
worker (cstd01-207): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 66027) on cstd01-206
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 73000) on cstd01-207

LiDO3 | First Contact page 94 of 216

IT & Medien Centrum | LiDO3 | First Contact

worker (cstd01-206): stop
worker (cstd01-208): stop
worker (cstd01-205): stop
worker (cstd01-207): stop
worker (cstd01-208): stop
worker (cstd01-206): stop
worker (cstd01-206): stop
worker (cstd01-208): stop
worker (cstd01-205): stop
worker (cstd01-205): stop
worker (cstd01-207): stop
worker (cstd01-207): stop
sbatch: STOP

Due to race conditions, the order is not predictable.

If you need to use third party software in your job script that is available via the
module system, see section Modules in job scripts on page 77.

If the path to the output file does not exist or can not be written to (e.g.
points outside of /work), the Slurm job will seemingly fail silently (unless mail noti-
fication is enabled). One can query the Slurm database explicitly for such failed jobs
with sacct --starttime=HH:MM --state=FAILED.

4.4.5 Controlling running and finished jobs
4.4.5.1 scontrol, squeue, showq - Query Job status

The status of each Slurm job can be queried with scontrol show job <job_id>
and squeue.

[<username>@gw01 ~]$ scontrol show job 11283
JobId=11283 JobName=demoscript

UserId=<username>(<uid>) GroupId=<username>(<gid>)
↪ MCS_label=N/A
Priority=21149 Nice=0 Account=itmc QOS=normal
JobState=RUNNING Reason=None Dependency=(null)
Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
RunTime=00:00:47 TimeLimit=00:02:00 TimeMin=N/A
SubmitTime=2017-08-11T14:20:13 EligibleTime=2017-08-11T14:20:13

LiDO3 | First Contact page 95 of 216

IT & Medien Centrum | LiDO3 | First Contact

StartTime=2017-08-11T14:20:13 EndTime=2017-08-11T14:22:13
↪ Deadline=N/A
PreemptTime=None SuspendTime=None SecsPreSuspend=0
Partition=short AllocNode:Sid=gw01:60481
ReqNodeList=(null) ExcNodeList=(null)
NodeList=cstd01-[001-004]
BatchHost=cstd01-001
NumNodes=4 NumCPUs=12 NumTasks=12 CPUs/Task=1
↪ ReqB:S:C:T=0:0:*:*
TRES=cpu=12,mem=1200M,node=4
Socks/Node=* NtasksPerN:B:S:C=3:0:*:* CoreSpec=*
MinCPUsNode=3 MinMemoryCPU=100M MinTmpDiskNode=0
Features=(null) DelayBoot=00:00:00
Gres=(null) Reservation=(null)
OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
Command=/home/<username>/my_submit_script.sh
WorkDir=/home/<username>
StdErr=/work/<username>/demo.out.txt
StdIn=/dev/null
StdOut=/work/<username>/demo.out.txt
Power=

and squeue respectively.
Example session to get all own jobs:

[<username>@gw01 ~]$ squeue -u $USER
JOBID PARTITION NAME USER ST TIME NODES
↪ NODELIST(REASON)

14004 short demoscri <username> R 0:03 2
↪ cgpu01-[002-003]

13977 short bash <username> R 9:36 1 cgpu01-001
13978 med glidein <username> R 8:08 1 cstd01-021
^
|
|
R = running
PD = pending

You can let squeue show periodic updates of its output with the iterate parame-
ter. Simply add -i 30 to the squeue parameter list and squeue will run indefinitely
and update its output every 30 seconds until you abort it via STRG+C.

LiDO3 | First Contact page 96 of 216

IT & Medien Centrum | LiDO3 | First Contact

Please do not use the watch command in conjunction with squeue as this
places a heavy burden on the Slurm server.

Example session to get information for a specific job:

[<username>@gw01 ~]$ squeue --jobs=14005
JOBID PARTITION NAME USER ST TIME NODES
↪ NODELIST(REASON)

14005 short demoscri <username> R 0:04 2
↪ cgpu01-[002-003]

Example session to get information for a specific job including job steps:

[<username>@gw01 ~]$ squeue --job=14008 --steps
STEPID NAME PARTITION USER TIME NODELIST
14008.0 sleep short <username> 0:35 cstd01-[001-002]
14008.1 sleep short <username> 0:23 cstd01-[003-006]
14008.2 sleep short <username> 0:13 cstd01-[007-010]
14008.Extern extern short <username> 2:09 cstd01-[001-010]

Example session to get estimated starting time for all own jobs:

[<username>@gw01 ~]$ squeue --start -u $USER
JOBID PARTITION NAME USER ST START_TIME NODES
↪ NODELIST(REASON)

14005 short demoscri <username> PD 2015-10-15T16:36:49 2
↪ (Resources)

The estimated starting time needs to be taken with a grain truckload of salt:
The Slurm scheduler has to solve an NP-hard problem in optimising the cluster usage:
◾ The cluster should always be fully utilized. This is particulary achieved via back-

filling, i.e. to start jobs with a smaller priority to use the reserved job slots, as
long as these jobs do not delay the start of another job.
◾ Large jobs require the cluster to be nearly empty to start.

LiDO3 | First Contact page 97 of 216

IT & Medien Centrum | LiDO3 | First Contact

◾ The runtime estimates users provide in their Slurm job files (using the options -t
or --time) are often not very accurate, typically they largely overestimate the
actual runtime. Unanticipated program abortions (node failures, codes crashing
etc.) completely thwart any prognosis the scheduler has come up with before
about when compute nodes become idle.
◾ Arbitrary nodes may need to be drained for unplanned maintenance (for hardware

repairs or to install critical security fixes)
That said, your average waiting time will be smaller if the total amount of computa-
tional time (number of computes cores times the wall clock time) is less. The lesser
resources you request, the higher your job gets prioritised which – ignoring the back-
filling mechanism – leads to the job getting started quicker. Hence:
◾ Do not simply request the maximum time limit a particular partitions allows if

you know beforehand that your job will need less. E.g. do not ask for 28 days
in partition ultralong if you know that your simulation will finish with 4-5 days.
◾ Statistics teaches us that the average waiting time for a particular partition is,

in general, half the maxium time limit of said partition. Hence, your average
waiting time will be, in comparison to the waiting times in partitions large or
ultralong, much smaller if you use the short or med partition where possible.
◾ The fewer compute cores you request, the more likely your Slurm job will start.
◾ If applicable, do not request compute nodes exclusively such that compute nodes

do not need to be completely drained for your job to start.
The third-party tool showq66 mimics the functionality of the PBS/Torque tool showq.
In particular, it gives a good sorted overview about all jobs and their respective status.
Example session to get all your jobs:

gw02: ~>$ showq -u $USER

SUMMARY OF JOBS FOR USER: <smdiribb>
ACTIVE JOBS--------------------
JOBID JOBNAME USERNAME STATE CORE REMAINING
↪ STARTTIME

WAITING JOBS------------------------
JOBID JOBNAME USERNAME STATE CORE WCLIMIT
↪ QUEUETIME

66https://github.com/fasrc/slurm_showq

LiDO3 | First Contact page 98 of 216

https://github.com/fasrc/slurm_showq
https://github.com/fasrc/slurm_showq

IT & Medien Centrum | LiDO3 | First Contact

11048282 OSU smdiribb Waiting 2 0:15:00 Thu
↪ Jun 4 10:46:54

11566299 feat smdiribb Waiting 16 8:00:00 Thu
↪ Aug 13 00:30:01

Total Jobs: 2 Active Jobs: 0 Idle Jobs: 2 Blocked Jobs:
↪ 0

4.4.5.2 scancel - Cancel a queued job

A Slurm job can be removed from the job queue via scancel <job_id>.

[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 11284
[<username>@gw01 ~]$ scancel 11284
[<username>@gw01 ~]$ scontrol show job 11284
JobId=11284 JobName=demoscript

UserId=<username>(<uid>) GroupId=<username>(<gid>)
↪ MCS_label=N/A
Priority=21158 Nice=0 Account=itmc QOS=normal
JobState=CANCELLED Reason=None Dependency=(null)

4.4.5.3 Decreasing job priority with scontrol, sbatch

You can manually decrease the job’s priority by increasing the so-called nice value of a
pending job. This can be appropriate if some of your jobs are not critical in terms of
time, e.g. cleanup tasks. As it is very hard to estimate the effect of some specific nice
value setting one usually goes all in and sets the nice value to the maximum possible
value: 2147483645.
The nice value can be set at job submission via

sbatch --nice=2147483645 myjobscript.slurm

or afterwards via

scontrol update job myjobid nice=2147483645

LiDO3 | First Contact page 99 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.4.5.4 seff, sacct - show post job performance analysis

In order to be able to see for yourself whether your job has efficently used the allocated
resources, the tool seff is available on LiDO3. Using this tool, one can run a short
analysis on completed Slurm jobs. seff takes a the job ID as argument, example usage:
seff 12345. Note that for job arrays, the full job ID is required, i.e. for example
seff 12345_7, otherwise seff processes only the last array entry.

gw01: ~>$ seff 11401523
Job ID: 11401523
Cluster: lido3
User/Group: smdiribb/smdiribb
State: COMPLETED (exit code 0)
Nodes: 1
Cores per node: 20
CPU Utilized: 00:03:54
CPU Efficiency: 2.79% of 02:19:40 core-walltime
Job Wall-clock time: 00:06:59
Memory Utilized: 376.64 MB
Memory Efficiency: 0.61% of 60.00 GB

The product of ’Nodes’ and ’Cores per node’ is the allocated CPU core number. In
this example 2*20=40. The CPU time is the product of the ’Job Wall-clock time’
and the number of cores. If the resulting ’CPU efficiency’ is much smaller than 100%,
there may be several reasons for this:
◾ the application used fewer cores than the allocated amount of cores;
◾ the application used all cores for part of the time, but not all cores were used

for a significant period of time;
◾ the application is limited by memory size or memory transfer speed and thus

CPU usage is no meaningful metric at all.
On the other hand is a high cpu efficiency not unconditionally equivalent to an optimal
resource usage. It can happen, that your applications starts a huge amount of threads
(sometime hundreds) and thus the operationg system is busy switching contexts and
your own application does not get cpu time at all. Despite your application making no
progress, seff will asure you a high cpu efficiency.
Another approach is to use sacct for information gathering.

gw01: ~>$ sacct --format="CPUTime,AveCPU,MaxDiskWrite" -j
↪ 11401523

LiDO3 | First Contact page 100 of 216

IT & Medien Centrum | LiDO3 | First Contact

CPUTime AveCPU MaxDiskWrite
---------- ---------- ------------
02:19:40
02:19:40 00:03:50 82.88M
02:20:00 00:00:00 0

A complete list of possible data can be retrieved by

gw01: ~>$ sacct -e
Account AdminComment AllocCPUS AllocGRES
AllocNodes AllocTRES AssocID AveCPU
AveCPUFreq AveDiskRead AveDiskWrite AvePages
AveRSS AveVMSize BlockID Cluster
Comment Constraints ConsumedEnergy ConsumedEnergyRaw
CPUTime CPUTimeRAW DBIndex DerivedExitCode
Elapsed ElapsedRaw Eligible End
ExitCode Flags GID Group
JobID JobIDRaw JobName Layout
MaxDiskRead MaxDiskReadNode MaxDiskReadTask MaxDiskWrite
MaxDiskWriteNode MaxDiskWriteTask MaxPages MaxPagesNode
MaxPagesTask MaxRSS MaxRSSNode MaxRSSTask
MaxVMSize MaxVMSizeNode MaxVMSizeTask McsLabel
MinCPU MinCPUNode MinCPUTask NCPUS
NNodes NodeList NTasks Priority
Partition QOS QOSRAW Reason
ReqCPUFreq ReqCPUFreqMin ReqCPUFreqMax ReqCPUFreqGov
ReqCPUS ReqGRES ReqMem ReqNodes
ReqTRES Reservation ReservationId Reserved
ResvCPU ResvCPURAW Start State
Submit Suspended SystemCPU SystemComment
Timelimit TimelimitRaw TotalCPU TRESUsageInAve
TRESUsageInMax TRESUsageInMaxNode TRESUsageInMaxTask TRESUsageInMin
TRESUsageInMinNode TRESUsageInMinTask TRESUsageInTot TRESUsageOutAve
TRESUsageOutMax TRESUsageOutMaxNode TRESUsageOutMaxTask TRESUsageOutMin
TRESUsageOutMinNode TRESUsageOutMinTask TRESUsageOutTot UID
User UserCPU WCKey WCKeyID
WorkDir

4.4.6 Constraints on node-features
The LiDO3-Team has assigned so-called features to the different nodes in the LiDO3-
cluster. Those features can specifically requested with the --constraint parameter
of the srun, sbatch and salloc commands.

LiDO3 | First Contact page 101 of 216

IT & Medien Centrum | LiDO3 | First Contact

Table 4.4: List of features.

Nodelist Features CPU Type max. max.
GPU Type cores memory

cgpu01-[001-020] all
public
cgpu01
xeon_e52640v4
gpu
tesla_k40
ib_1to3

2 × Intel®Xeon E5 2640v4
2.4 GHz, L3 cache 25 MB

2 × Nvidia®Tesla K40

20 64 GB

MaxMemPerNode=62000

cgpu02-[001-002] all
public
cgpu02
xeon_e52690v4
p100
gpu
tesla_p100
ib_1to3

2 × Intel®Xeon E5 2690v4
2.4 GHz, L3 cache 25 MB

1 × Nvidia®Tesla P100

28 256 GB

MaxMemPerNode=255000

cgpu04-[001] all
private
cgpu04
epyc_7252
a6000
gpu
ib_1to3

1 × AMD EPYC 7252
3.1 GHz, L3 cache 64 MB

1 × Nvidia®RTX A6000

8 256 GB

MaxMemPerNode=255000

cquad01-[001-
028]

all
public
cquad01
xeon_e54640v4
ib_1to3

4 × Intel®Xeon E5 4640v4
2.1 GHz, L3 cache 30 MB

48 256 GB

MaxMemPerNode=255000

cquad02-[001-
002]

all
public
cquad02
xeon_e54640v4
ib_1to3

4 × Intel®Xeon E5 4640v4
2.1 GHz, L3 cache 30 MB

48 1024 GB

MaxMemPerNode=1029000

cquad03-[001-
002]

all
private
cquad03
xeon_gold_6230
ib_1to3

4 × Intel®Xeon Gold 6230
2.1 GHz, L3 cache 28 MB

80 512 GB

MaxMemPerNode=498000

continued on next page . . .

LiDO3 | First Contact page 102 of 216

IT & Medien Centrum | LiDO3 | First Contact

. . . continued from previous page

Nodelist Features CPU Type max. max.
GPU Type cores memory

cstd01-[001-244] all
public
cstd01
xeon_e52640v4
ib_1to3

2 × Intel®Xeon E5 2640v4
2.4 GHz, L3 cache 25 MB

20 64 GB

MaxMemPerNode=62000

cstd10-[006-032] all
public
cstd01
xeon_e52640v4
ib_1to1
nonblocking_comm

2 × Intel®Xeon E5 2640v4
2.4 GHz, L3 cache 25 MB

20 256 GB

MaxMemPerNode=250000

cstd02-[001-044] all
public
cstd02
xeon_e52640v4
ib_1to1
nonblocking_comm

2 × Intel®Xeon E5 2640v4
2.4 GHz, L3 cache 25 MB

20 64 GB

MaxMemPerNode=62000

cstd03-[001-004] all
public
cstd03
xeon_e52690v4
ib_1to3

2 × Intel®Xeon E5 2690v4
2.4 GHz, L3 cache 35 MB

28 256 GB

MaxMemPerNode=255000

cstd04-[001-004] all
public
cstd04
xeon_gold_6134
ib_1to3

2 × Intel®Gold 6134 CPU
2.4 GHz, L3 cache 24 MB

16 192 GB

MaxMemPerNode=187000

cstd05-[001-005] all
private
cstd05
epyc_7542
ib_1to3

2 × AMD EPYC 7542 CPU
2.49 GHz, L3 cache 128 MB

64 1024 GB

MaxMemPerNode=1029000

cstd06-[001] all
private
cstd06
xeon_gold_6242r
ib_1to3

2 × Intel Xeon Gold 6242R
CPU

3.1 GHz, L3 cache 35 MB

40 96 GB

MaxMemPerNode=92000

continued on next page . . .

LiDO3 | First Contact page 103 of 216

IT & Medien Centrum | LiDO3 | First Contact

. . . continued from previous page

Nodelist Features CPU Type max. max.
GPU Type cores memory

cstd07-[001] all
private
cstd07
epyc_7542
ib_1to3

2 × AMD EPYC 7542 CPU
2.49 GHz, L3 cache 128 MB

64 256 GB

MaxMemPerNode=255000

cstd08-[001] all
private
cstd08
epyc_7453
ib_1to3

2 × AMD EPYC 7542 CPU
2.75 GHz, L3 cache 64 MB

56 512 GB

MaxMemPerNode=498000

cstd09-[001] all
private
cstd09
epyc_7313
ib_1to3

2 × AMD EPYC 7313 CPU
3.00 GHz, L3 cache 128 MB

32 768 GB

MaxMemPerNode=757000

Example session for srun

[<username>@gw01 ~]$ srun --constraint=cstd01 --pty bash
[<username>@cstd01-019 ~]$ echo $SLURM_TASK_PID
166178
[<username>@cstd01-019 ~]$ exit
exit

Example session for sbatch

[<username>@gw01 ~]$ cat my_submit_script.sh
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=3
#SBATCH --time=2:00
#SBATCH --mem-per-cpu=100
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
srun echo "START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID

↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"
srun echo "STOP on $SLURMD_NODENAME"

LiDO3 | First Contact page 104 of 216

IT & Medien Centrum | LiDO3 | First Contact

[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 13891
[<username>@gw01 ~]$ scontrol show job 13891
JobId=13891 JobName=demoscript

UserId=<username>(<uid>) GroupId=<username>(<gid>)
↪ MCS_label=N/A
Priority=28436 Nice=0 Account=itmc QOS=normal
JobState=COMPLETED Reason=None Dependency=(null)
(...)

#[<username>@gw01 ~]$ cat /work/<username>/demo.out.txt
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
STOP on cstd01-019
STOP on cstd01-019
STOP on cstd01-019
STOP on cstd01-019
STOP on cstd01-019
STOP on cstd01-019

[<username>@gw01 ~]$

As you can see with man sbatch, nodes can have features assigned to them by
the Slurm administrator. Users can specify which of these features are required by
their job using the constraint option. Only nodes having features matching the job
constraints will be used to satisfy the request. Multiple constraints may be specified
with AND, OR, matching OR, resource counts, etc. (some operators are not supported
on all system types). Supported constraint options include:

Single Name Only nodes which have the specified feature will be used. For example,
--constraint="ib_1to1"

Node Count A request can specify the number of nodes needed with some feature by append-
ing an asterisk and count after the feature name. For example, --nodes=16
↪ --constraint=cstd01*4 indicates that the job requires 16 nodes and
that at least four of those nodes must have the feature "cstd01."

AND If only nodes with all of specified features will be used. The ampersand is used for
an AND operator. For example, --constraint="xeon_e52640v4&gpu"

LiDO3 | First Contact page 105 of 216

IT & Medien Centrum | LiDO3 | First Contact

OR If only nodes with at least one of specified features will be used.
The vertical bar is used for an OR operator. For example,
--constraint="xeon_e52640v4|e54640v4"

Matching OR If only one of a set of possible options should be used for all allocated nodes,
then use the OR operator and enclose the options within square brackets. For
example: "--constraint=[rack1|rack2|rack3|rack4]" might be
used to specify that all nodes must be allocated on a single rack of the cluster,
but any of those four racks can be used.

Multiple Counts Specific counts of multiple resources may be specified by using the AND
operator and enclosing the options within square brackets. For example:
"--constraint=[rack1*2&rack2*4]" might be used to specify that
two nodes must be allocated from nodes with the feature of "rack1" and four
nodes must be allocated from nodes with the feature "rack2".

4.4.7 Generic Resource (GRES) - request a GPU
Reserving a GPU node by using constraints (see page 101) is only one half of the story.
Other users may be already using the GPU when your job starts on one of those nodes
and they seem too valuable to use them just for CPU-bound tasks.
GPUs are defined as a Generic Resource (short GRES) in Slurm and can be re-
quested with the --gres=gpu:tesla[:count] option which is supported by
the salloc, sbatch and srun commands. Where count specifies how many
resources are required and has a default value of 1.
◾ For the 20 nodes with 2 GPU NVIDIA® K40 GPUs each, count has a valid

maximum of 2.
◾ For the 2 nodes with 1 GPU NVIDIA® P100 GPU each, count has a valid

maximum of 1.

Each K40 GPU is bound to one CPU socket. Thus an allocation of more than
10 CPU cores and more than 1 GPU goes side by side. It is actually not possible
to allocate 11 or more CPU cores without allocating both GPUs. This procedure is
embedded to ensure that each GPU can be accessed by a process running on the cor-
responding CPU socket.
If one wants to use only one CPU socket and only one GPU, the Slurm parameter
--gres-flags=enforce-binding ensures that only those CPU cores corre-
sponding to the corresponding CPU socket are allocated.

LiDO3 | First Contact page 106 of 216

IT & Medien Centrum | LiDO3 | First Contact

reserve 1 non-exclusive node and both GPUs on it
[<username>@gw01 ~]$ salloc --nodes=1 --gres=gpu:tesla:2
salloc: Granted job allocation 14037
salloc: Waiting for resource configuration
salloc: Nodes cgpu01-003 are ready for job
[<username>@gw01 ~]$ ssh -X cgpu01-003
Warning: Permanently added 'cgpu01-003,10.10.3.3' (ECDSA) to the

↪ list of known hosts.
[<username>@cgpu01-003 ~]$ module load nvidia/cuda/8.0
[<username>@cgpu01-003 ~]$ nvvp -data $WORK -configuration $WORK

Figure 4.49: NVIDIA Visual Profiler on a Windows client.

[<username>@cgpu01-003 ~]$ exit
logout
Connection to cgpu01-003 closed.
[<username>@gw01 ~]$ scancel 14037
[<username>@gw01 ~]$ salloc: Job allocation 14037 has been
↪ revoked.

LiDO3 | First Contact page 107 of 216

IT & Medien Centrum | LiDO3 | First Contact

For each job step the environment variable CUDA_VISIBLE_DEVICES is set to
determine which GPUs are available for its use on each node
Example script that is executed on GPU nodes:

#!/bin/bash -l
echo "worker ($SLURMD_NODENAME): start"
echo "executing SLURM_JOB_ID $SLURM_JOB_ID \
(SLURM_TASK_PID $SLURM_TASK_PID, \
CUDA_VISIBLE_DEVICES $CUDA_VISIBLE_DEVICES) \
on $SLURMD_NODENAME"
sleep 10
echo "worker ($SLURMD_NODENAME): stop"

Example batch script that is used to run workerscript.sh on each GPU node:

#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=4
#SBATCH --exclusive
#SBATCH --gres=gpu:tesla:2
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID \
(SLURM_TASK_PID $SLURM_TASK_PID, \
CUDA_VISIBLE_DEVICES $CUDA_VISIBLE_DEVICES) \
on $SLURMD_NODENAME"
echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"
for RELATIVENODE in 0 1 2 3
do

srun --nodes=1 \
--relative=${RELATIVENODE} \
--gres=gpu:tesla:$(($RELATIVENODE%2+1)) \
--jobid=$SLURM_JOB_ID \
/home/<username>/workerscript.sh &

done
wait
echo "sbatch: STOP"

Finally the excecution and output:

[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 37141

LiDO3 | First Contact page 108 of 216

IT & Medien Centrum | LiDO3 | First Contact

[<username>@gw01 ~]$ cat /work/<username>/demo.out.txt
sbatch: START SLURM_JOB_ID 37171 (SLURM_TASK_PID 31707,
↪ CUDA_VISIBLE_DEVICES 0,1) on cgpu01-001

sbatch: SLURM_JOB_NODELIST cgpu01-[001-004]
sbatch: SLURM_JOB_ACCOUNT itmc
worker (cgpu01-004): start
executing SLURM_JOB_ID 37171 (SLURM_TASK_PID 8348,

↪ CUDA_VISIBLE_DEVICES 0,1) on cgpu01-004
worker (cgpu01-002): start
executing SLURM_JOB_ID 37171 (SLURM_TASK_PID 13088,

↪ CUDA_VISIBLE_DEVICES 0,1) on cgpu01-002
worker (cgpu01-003): start
executing SLURM_JOB_ID 37171 (SLURM_TASK_PID 8950,

↪ CUDA_VISIBLE_DEVICES 0) on cgpu01-003
worker (cgpu01-001): start
executing SLURM_JOB_ID 37171 (SLURM_TASK_PID 31755,

↪ CUDA_VISIBLE_DEVICES 0) on cgpu01-001
worker (cgpu01-002): stop
worker (cgpu01-004): stop
worker (cgpu01-001): stop
worker (cgpu01-003): stop
sbatch: STOP

Due to race conditions the order is not predictable. Although the option #SBATCH
↪ --gres=gpu:tesla:2 is used, the number of GPUs must be expliticly required.
The script alternated between --gres=gpu:tesla:1 and --gres=gpu:tesla:2
for every srun-call to show that effect

4.4.8 Memory management
Slurm monitors memory usage of a job in two different flavours:
◾ memory usage per node
◾ memory usage per core

Only one limit can be active at any time. If a job exceeds this limit, it is immediately
aborted. The larger the data processed by your job, the larger this limit needs to
be. The lower you set this limit, the easier it is for the Slurm scheduler to find
a place for your job to run in the partition. The maximum upper limit per node
(MaxMemPerNode) can be seen in table 4.4 on page 102. The maximum upper limit
per core can be derived with the inequality

cpus-per-task ×mem-per-cpu <MaxMemPerNode

LiDO3 | First Contact page 109 of 216

IT & Medien Centrum | LiDO3 | First Contact

The number of cores times the memory per core must not exceed the maximum upper
limit (MaxMemPerNode).
If no limit is provided by the job, a memory limit per core is set to DefMemPerCPU =
512 per node (512 MB per core). If a job uses more than that, it is terminated with
job Exceeded job memory limit error message.
You can set a larger limit per core by using the --mem-per-cpu <memory> option,
where <memory> is the limit in MB — different units can be specified by using the
suffix [K|M|G|T].

[<username>@gw01 ~]$ cat my_submit_script.sh
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=3
#SBATCH --time=2:00
#SBATCH --mem-per-cpu=500M
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
srun echo "START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID

↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"
srun sleep 30
srun sleep 30
srun sleep 30
srun echo "STOP on $SLURMD_NODENAME"
[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 16571

If you are not sure what a good setting would be, you can try to determine an appro-
priate value by starting your job with a short runtime and a relatively large memory
limit and then use the sacct command to monitor how much your job is actually
using or has used.

[<username>@gw01 ~]$ sacct --format MaxRSS --job=16571
MaxRSS

284K
88K
92K

[<username>@gw01 ~]$

LiDO3 | First Contact page 110 of 216

IT & Medien Centrum | LiDO3 | First Contact

To set the alternative limit for the full node memory consumption, one uses the
--mem <memory> option, where <memory> is the limit in MB — different units
can be specified by using the suffix [K|M|G|T]. The maximum upper limit per node
(MaxMemPerNode) can be seen in table 4.4 on page 102.
Example session:

[<username>@gw01 ~]$ cat my_submit_script.sh
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=3
#SBATCH --time=2:00
#SBATCH --mem=500M
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
srun echo "START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID

↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"
srun sleep 30
srun sleep 30
srun sleep 30
srun echo "STOP on $SLURMD_NODENAME"
[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 16572

If you are not sure what a good setting would be, you can try to determine an appro-
priate value by starting your job with a short runtime and a relatively large memory
limit and then use the sacct command to monitor how much your job is actually
using or has used.
Example session:

[<username>@gw01 ~]$ sacct --format MaxRSS --job=16572
MaxRSS

84K

[<username>@gw01 ~]$

The output is in KB, so divide by 1024 to get a rough idea of what setting to use
with --mem (since you’re defining a hard upper limit, round up that number a little
bit). You can tell sacct to look further back in time by adding a start time with
--starttime YYYY-MM-DD if your job ran too far in the past.

LiDO3 | First Contact page 111 of 216

IT & Medien Centrum | LiDO3 | First Contact

[<username>@gw01 ~]$ sacct --format MaxRSS --job=16572 \
--starttime 2017-08-23

MaxRSS

3512K
0

84K
92K
92K
92K
84K

[<username>@gw01 ~]$

The --mem options sets the maximum memory used on any one node running your
job parallel spanning multiple nodes; to get an even distribution of tasks per node, you
can use run using the --ntasks-per-node option, otherwise the same job could
have very different values when run at different times.

A memory size specification of zero is treated as a special case and grants the
job access to all of the memory on each node. If multiple nodes with different memory
layout are allocated for your job in the LiDO3 cluster, the node with the smallest
memory size in the allocation defines the memory limit for each node of the allocation
— the same limit will apply to every node.

The --mem option and the the --mem-per-cpu option are mutually exclu-
sive!

4.4.9 Utilize complete nodes
If a user submits a job, it is very well possible that other jobs will run on the same
nodes. To make a reservation for a complete node, use a --exlusive statement.

Example reservation for 1 node:
[<username>@gw01 ~]$ salloc --nodes=1 --exclusive
salloc: Granted job allocation 140042
salloc: Waiting for resource configuration
salloc: Node cstd01-017 is ready for job

LiDO3 | First Contact page 112 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.4.10 SBATCH statements inside of Slurm job scripts
Here is a non-exhaustive list of frequently used Slurm statements that can be used
inside of a job script generated with help of man sbatch.
◾ #SBATCH --job-name=<jobname>

Specify a name for the job allocation. The specified name will appear along with
the job ID number when querying running jobs on the system. The default is
the name of the batch script, or just "sbatch" if the script is read on sbatch’s
standard input.
◾ #SBATCH --nodes=<minnodes[-maxnodes]>

Request that a minimum of minnodes nodes be allocated to this job. A maxi-
mum node count may also be specified with maxnodes. If only one number is
specified, this is used as both the minimum and maximum node count. The
partition’s node limits supersede those of the job. If a job’s node limits are
outside of the range permitted for its associated partition, the job will be left
in a PENDING state. This permits possible execution at a later time, when
the partition limit is changed. If a job node limit exceeds the number of nodes
configured in the partition, the job will be rejected. Note that the environment
variable SLURM_NNODES will be set to the count of nodes actually allocated to
the job. If -N is not specified, the default behavior is to allocate enough nodes
to satisfy the requirements of the -n and -c options. The job will be allocated
as many nodes as possible within the range specified and without delaying the
initiation of the job. The node count specification may include a numeric value
followed by a suffix of "k" (multiplies numeric value by 1,024) or "m" (multiplies
numeric value by 1,048,576).
◾ #SBATCH --cpus-per-task=<ncpus>

In Slurm context a CPU is a consumable resource offered by a node. It can refer
to a socket, a core or a hardware thread, based on the Slurm configuration.
On LiDO3 a CPU means a single core.
◾ #SBATCH --ntasks=<ntasks>

The Slurm documentation says about this parameter: “sbatch does not launch
tasks, it requests an allocation of resources and submits a batch script. This op-
tion advises the Slurm controller that job steps run within the allocation will
launch a maximum of number tasks and to provide for sufficient resources. The

LiDO3 | First Contact page 113 of 216

IT & Medien Centrum | LiDO3 | First Contact

default is one task per node, but note that the --cpus-per-task option will
change this default.”

— Quoted from the sbatch manpage and sbatch documentation.67

While this explanation is perfectly valid, it nonetheless confuses most people
reading it for the first time. Let us consider the following examples to clear
things up:
◾ If you will run a single application that will not use an MPI library, re-

gardless whether the application runs with one or multiple threads, use
--ntasks=1 If you do not know what an MPI library is, use this setting,
too.
◾ If you want to run more than one application concurrently within the same

Slurm batch script, e.g. a process that provides data (a database server,
some simulation outputting results) and another process that postprocesses
this data, ask Slurm for as many separate tasks as you will be running pro-
cesses at most simultaneously (if your processes run multithreaded, count
every thread as one task).
◾ When using an MPI application without additional threading (i.e. no hybrid

parallelisation): If you would normally start your MPI application on a local
workstation (i.e. no Slurm context) with

$ mpirun -np <ntasks> /path/to/application
↪ <application arguments>

you specify <ntasks> as argument to the sbatch option --ntasks
and instead invoke

$ srun /path/to/application <application arguments>

◾ #SBATCH --ntasks-per-node=<ntasks>

Request that ntasks be invoked on each node. If used with the --ntasks op-
tion, the --ntasks option will take precedence and the --ntasks-per-node
will be treated as a maximum count of tasks per node.
Meant to be used with the --nodes option.

LiDO3 | First Contact page 114 of 216

https://slurm.schedmd.com/sbatch.html

IT & Medien Centrum | LiDO3 | First Contact

This is related to the --cpus-per-task option, but does not require knowl-
edge of the actual number of cpus on each node. In some cases, it is more
convenient to be able to request that no more than a specific number of tasks
be invoked on each node.
Examples of this include submitting a hybrid MPI/OpenMP app where only one
MPI "task/rank" should be assigned to each node while allowing the OpenMP
portion to utilize all of the parallelism present in the node, or submitting a single
setup/cleanup/monitoring job to each node of a pre-existing allocation as one
step in a larger job script.
◾ #SBATCH --cpus-per-task=<ncores>

Request that <ncores> cpu cores will be reserved for each task/rank. These
will be used by threads started by each task/rank.
In contrast the option --cpus-per-task specifies how many CPU cores each
task can use.
◾ #SBATCH --partition=<partition_names>

Request a specific partition for the resource allocation. If not specified, the
default behavior is to allow the Slurm controller to select the default partition
as designated by the system administrator. If the job can use more than one
partition, specify their names in a comma separate list and the one offering
earliest initiation will be used with no regard given to the partition name ordering
(although higher priority partitions will be considered first). When the job is
initiated, the name of the partition used will be placed first in the job record
partition string.
◾ #SBATCH --time=<time>

Set a limit on the total run time of the job allocation. If the requested time limit
exceeds the partition’s time limit, the job will be left in a PENDING state (possi-
bly indefinitely). The default time limit is the partition’s default time limit. When
the time limit is reached, each task in each job step is sent SIGTERM followed
by SIGKILL. The interval between signals is specified by the Slurm config-
uration parameter KillWait. (On LiDO3, KillWait is set to 30 s.) The
OverTimeLimit configuration parameter may permit the job to run longer
than scheduled. (On LiDO3, OverTimeLimit is not configured.) Time res-
olution is one minute and second values are rounded up to the next minute.
A time limit of zero requests that no time limit be imposed. Acceptable time
formats include "minutes", "minutes:seconds", "hours:minutes:seconds", "days-
hours", "days-hours:minutes" and "days-hours:minutes:seconds".

LiDO3 | First Contact page 115 of 216

IT & Medien Centrum | LiDO3 | First Contact

◾ #SBATCH --output=<filename pattern>

Instruct Slurm to connect the batch script’s standard output directly to the file
name specified in the “filename pattern”. By default both standard output and
standard error are directed to the same file. For job arrays, the default file name
is "slurm-%A_%a.out", "%A" is replaced by the job ID and "%a" with the
array index. For other jobs, the default file name is "slurm-%j.out", where
the "%j" is replaced by the job ID.
◾ #SBATCH --error=<filename pattern>

Instruct Slurm to connect the batch script’s standard error directly to the file
name specified in the "filename pattern". By default both standard output and
standard error are directed to the same file. For job arrays, the default file name
is "slurm-%A_%a.out", "%A" is replaced by the job ID and "%a" with the
array index. For other jobs, the default file name is "slurm-%j.out", where
the "%j" is replaced by the job ID.
◾ #SBATCH --mail-type=<type>

Notify user by email when certain event types occur. Valid type values are
NONE, BEGIN, END, FAIL, REQUEUE, ALL (equivalent to BEGIN, END,
FAIL, REQUEUE and STAGE_OUT), STAGE_OUT (burst buffer stage out
and teardown completed), TIME_LIMIT, TIME_LIMIT_90 (reached 90 per-
cent of time limit), TIME_LIMIT_80 (reached 80 percent of time limit),
TIME_LIMIT_50 (reached 50 percent of time limit) and ARRAY_TASKS (send
emails for each array task). Multiple type values may be specified in a comma
separated list. The user to be notified is indicated with --mail-user. Unless
the ARRAY_TASKS option is specified, mail notifications on job BEGIN, END
and FAIL apply to a job array as a whole rather than generating individual email
messages for each task in the job array. Omit for no email notification.
◾ #SBATCH --mail-user=<user>

User’s email-address to receive email notification of state changes as defined by
--mail-type. The default value is the submitting user. In contrast to the
depiction in the man-page the value for --mail-user must be set if email
notifcation is wanted for a submitting user (AKA Slurm account68) that is not
the login user.
◾ #SBATCH --export=<environment variables | ALL | NONE>

68Usually the login user has the same name as the Slurm account. Some factulties use a different
slum account to submit jobs so that they can share the job management and the results.

LiDO3 | First Contact page 116 of 216

IT & Medien Centrum | LiDO3 | First Contact

Identify which environment variables are propagated to the batch job. Mul-
tiple environment variable names should be comma separated. Environment
variable names may be specified to propagate the current value of those vari-
ables (e.g. "--export=EDITOR") or specific values for the variables may be
exported (e.g.. "--export=EDITOR=/bin/vi") in addition to the environ-
ment variables that would otherwise be set. This option is particularly important
for jobs that are submitted on one cluster and execute on a different cluster
(e.g. with different paths). By default all environment variables are propa-
gated. If the argument is NONE or specific environment variable names, then
the --get-user-env option will implicitly be set to load other environment
variables based upon the user’s configuration on the cluster which executes the
job.
◾ #SBATCH --no-requeue

Indicates that a job should not rerun if it fails. As per default a job is restarted
(keeping its Slurm job id) if it was aborted due to cluster-side issues, e.g. a
node failure due to hardware defects. Some job scripts are not prepared for
instant restart or precious progress in temporary result files can be deleted by a
unexpected restart. In this cases a user can prevent any restart on the job script
level.

4.4.11 Slurm cheat sheet
Table 4.5: Slurm cheat sheet.

Action Slurm
Job information

squeue <job_id>
scontrol show job <job_id>

Job information (all)
squeue -al
scontrol show job

Job information (user)
squeue -u $USER
showq -u $USER

Queue information
squeue

Delete a job
scancel <job_id>

Submit a job
srun <jobfile>
sbatch <jobfile>
salloc <jobfile>

Interactive job
salloc -N <minnodes[-maxnodes]> \
-p <partition> sh

Free processors
srun -test-only -p <partition> \
-n 1 -t <time limit> sh

continued on next page . . .

LiDO3 | First Contact page 117 of 216

IT & Medien Centrum | LiDO3 | First Contact

. . . continued from previous page
Action Slurm
Expected start time 69 squeue --start -j <job_id>
Queues/partitions

sinfo -s

scontrol show partition
Node list

sinfo -N
scontrol show nodes

Node details
scontrol show node <nodename>

Queue 70
sinfo
sinfo -o "%P %l %c %D "

Start job
scontrol update JobId=<job_id> \
StartTime=now

Hold job
scontrol update JobId=<job_id> \
StartTime=now+30days

Release hold job
scontrol update JobId=<job_id> \
StartTime=now

Pending job
scontrol requeue <job_id>

Graphical Frontend
sview

set priority
scontrol update JobId=<job_id> \
-nice=-10000

preempt job
scontrol requeue <job_id>

suspend job
scontrol suspend <job_id>

resume job
scontrol resume <job_id>

QoS details
sacctmgr show QOS

Performance metrics
seff <job_id>

69See also section scontrol, squeue, showq - Query Job status on page 95 for background
informations.

70See also section Format options for slurm commands on page 119.

LiDO3 | First Contact page 118 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.4.12 List of job states
Table 4.6: Job state.

Short Long Explanation

CA CANCELLED
Job was explicitly cancelled by the user or system administrator. The
job may or may not have been initiated.

CD COMPLETED
Job has terminated all processes on all nodes.

CF CONFIGURING
Job has been allocated resources, but are waiting for them to become
ready for use (e.g. booting).

CG COMPLETING
Job is in the process of completing. Some processes on some nodes
may still be active.

F FAILED
Job terminated with non-zero exit code or other failure condition.

NF NODE_FAIL
Job terminated due to failure of one or more allocated nodes.

PD PENDING
Job is awaiting resource allocation.

PR PREEMPTED
Job terminated due to preemption.

R RUNNING
Job currently has an allocation.

S SUSPENDED
Job has an allocation, but execution has been suspended.

TO TIMEOUT
Job terminated upon reaching its time limit.

4.4.13 Format options for slurm commands
The available field specifications include:

Table 4.7: Field specifications.

Field Explanation

%a
State/availability of a partition

%A
Number of nodes by state in the format “allocated/idle”. Do not use this with a node
state option (“%t” or “%T”) or the different node states will be placed on separate lines.

%c
Number of CPUs per node

%d
Size of temporary disk space per node in megabytes

%D
Number of nodes

%f
Features associated with the nodes

%F
Number of nodes by state in the format “allocated/idle/other/total”. Do not use this
with a node state option (“%t” or “%T”) or the different node states will be placed on
separate lines.

continued on next page . . .

LiDO3 | First Contact page 119 of 216

IT & Medien Centrum | LiDO3 | First Contact

. . . continued from previous page

Field Explanation

%g
Groups which may use the nodes

%h
Jobs may share nodes, “yes”, “no”, or “force”’

%l
Maximum time for any job in the format “days-hours:minutes:seconds”

%m
Size of memory per node in megabytes

%N
List of node names

%P
Partition name

%r
Only user root may initiate jobs, “yes” or “no”

%R
The reason a node is unavailable (down, drained, or draining states)

%s
Maximum job size in nodes

%t
State of nodes, compact form

%T
State of nodes, extended form

%w
Scheduling weight of the nodes

%.<*>
right justification of the field

%<*>
size of field

4.4.14 Job variables
The available field specifications include:

Table 4.8: Job variables.

Environment Slurm
Job ID

SLURM_JOB_ID / SLURM_JOBID

Job name
SLURM_JOB_NAME

Node list
SLURM_JOB_NODELIST / SLURM_NODELIST

Submit directory
SLURM_SUBMIT_DIR

Submit host
SLURM_SUBMIT_HOST

Job array index
SLURM_ARRAY_TASK_ID

User
SLURM_JOB_USER

LiDO3 | First Contact page 120 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.5 Examples

4.5.1 Basic slurm script example
The following script asks for usage of 1 compute node with 20 cores for 10 minutes.
See ’man sbatch’ for details.

#!/bin/bash -l
#SBATCH --time=00:10:00
#SBATCH --nodes=1 --cpus-per-task=20 --constraint=cstd01
#SBATCH --partition=short
Maximum 'mem' values depending on constraint (values in MB):
cstd01/xeon_e52640v4/ib_1to3/cgpu01 AND
cstd02/xeon_e52640v4/ib_1to1/nonblocking_comm: 62188
cquad01: 255688
cquad02: 1029788
#SBATCH --mem=60000

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de
Possible 'mail-type' values: NONE, BEGIN, END, FAIL, ALL
↪ (=BEGIN,END,FAIL)

#SBATCH --mail-type=ALL

cd /work/user/workdir
module purge
module load pgi/17.5
export OMP_NUM_THREADS=20
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID
↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"

echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"
srun ./myapp

4.5.2 Example using multiple GPU nodes
The following script asks for usage of 2 compute node with 20 cores each and 2 GPUs
per node for 10 minutes. See ’man sbatch’ for details.

#!/bin/bash -l
for details.
#SBATCH --time=00:10:00
#SBATCH --nodes=2 --cpus-per-task=20 --constraint=cgpu01
↪ --gres=gpu:2

#SBATCH --partition=short

LiDO3 | First Contact page 121 of 216

IT & Medien Centrum | LiDO3 | First Contact

Maximum 'mem' values depending on constraint (values in MB):
cstd01/xeon_e52640v4/ib_1to3/cgpu01 AND
cstd02/xeon_e52640v4/ib_1to1/nonblocking_comm: 62188
cquad01: 255688
cquad02: 1029788
#SBATCH --mem=60000

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de
Possible 'mail-type' values: NONE, BEGIN, END, FAIL, ALL
↪ (=BEGIN,END,FAIL)

#SBATCH --mail-type=ALL

cd /work/user/workdir
module purge
module load nvidia/cuda
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID
↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"

echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"
nvidia-smi -a

4.5.3 Common software example: Abaqus
4.5.3.1 On a single compute node

To run Abaqus in shared memory mode on a single compute node, invoke the
following script via

sbatch run_abaqus_single_node_through_slurm.sh

It asks for 1 compute node with 8 cores for 90 minutes:

#!/bin/bash -l

#SBATCH --job-name=abaqusjob1
#SBATCH --partition=short
#SBATCH --time 01:30:00
Request 8 CPU cores in order to run Abaqus with 8 threads
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=8
#SBATCH --mem=50G # maximum memory required (in GB)
#inactive-SBATCH --mem=50000M # maximum memory required (in MB)
#SBATCH -o %x-%j.out # write standard output to a file

named after job name given above
and job ID assigned by Slurm.

LiDO3 | First Contact page 122 of 216

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH -e %x-%j.err # write error messages a file
named after job name given above
and job ID assigned by Slurm

send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

change to directory where your Abaqus input files are stored
Typically, this is also the location where your Slurm job
script got submitted such that we can use a conveniently
set environment variable. Otherwise, specify the absolute
path to your Abaqus input files here instead.
The actual error message this avoids is, e.g.,
"dlopen of libhwloc.so failed"
cd $SLURM_SUBMIT_DIR

Abaqus can be activated using one of the following module
files. (Note that the list may have been extended since this
documenation got written.)
#inactive module load abaqus/2018-hotfix10
#inactive module load abaqus/2021-hotfix4
#inactive module load abaqus/2022-hotfix6
module load abaqus/2023

When working with user subroutines, the Intel Fortran compiler
2019 is required. It is provided by one of the
intel/studio-xe/19* modulefiles.
module load intel/studio-xe/19.0.3.203

Users must unset the SLURM environment variable SLURM_GTIDS.
Failure to do so will cause Abaqus to get stuck due to the
MPI that Abaqus ships with not supporting the SLURM
scheduler. (SLURM_GTIDS should be unset for both
interactive/GUI and batch jobs.)
unset SLURM_GTIDS

By default, Abaqus will use /tmp to store temporary files.
But /tmp on LiDO3 compute nodes has a capacity of merely 36
GiB. Whereas the dedicated local file space /scratch provides
up to 1.8 TiB. So, use the latter to avoid risking to overflow

LiDO3 | First Contact page 123 of 216

IT & Medien Centrum | LiDO3 | First Contact

the root file system, causing a compute node to freeze.
Be aware, though, that this only works for simulations that
run on a single compute node. (For MPI parallel simulations
a shared network file system is required by Abaqus.)
Create a personal subdirectory under /scratch, if necessary.
TMPDIR=/scratch/${USER}
test -d "${TMPDIR}" || mkdir -p "${TMPDIR}"

===
Finally, invoke Abaqus for batch job execution.
##
To avoid having to adjust both the '#SBATCH --cpus-per-task=..'
line above and the abaqus invocation line below (and avoid
risking configuration mismatches) use the conveniently set
Slurm environment variable SLURM_CPUS_ON_NODE to tell Abaqus
how many CPU cores are available once this Slurm job runs.
##
Unfortunately, Slurm does not set such a variable for the
max. memory. (Its value can be queried by 'ulimit -m' from
this job script when the job runs.) So, when using the Abaqus
option "memory=..." make sure that its value matches that of
the leading #SBATCH --mem="..." line.
##
Uncomment the appropriate line marked with '#inactive' and
adapt it to your needs.

#inactive abaqus job=example mp_mode=threads
↪ cpus=${SLURM_CPUS_ON_NODE} scratch=${TMPDIR} double
↪ -interactive

#inactive abaqus job=example user=user_function01.f
↪ mp_mode=threads cpus=${SLURM_CPUS_ON_NODE}
↪ scratch=${TMPDIR} double -interactive

#inactive abaqus job=example user=user_function01.f
↪ mp_mode=threads cpus=${SLURM_CPUS_ON_NODE}
↪ scratch=${TMPDIR} double=both interactive

#inactive abaqus job=example user=user_function01.f
↪ mp_mode=threads cpus=${SLURM_CPUS_ON_NODE}
↪ scratch=${TMPDIR} double=both output_precision=full
↪ interactive

#inactive abaqus job=example user=user_function01.f
↪ mp_mode=threads cpus=${SLURM_CPUS_ON_NODE}
↪ scratch=${TMPDIR} double -interactive
↪ standard_parallel=solver

#inactive abaqus cae noGUI=createTest.py

When using Abaqus' built-in checkpoint and restart feature
add the following to the initial input file (refer to official

LiDO3 | First Contact page 124 of 216

IT & Medien Centrum | LiDO3 | First Contact

Abaqus documentation for detail):
*RESTART, WRITE, OVERLAY, FREQUENCY=10
where OVERLAY saves only one state, i.e. overwrites the
restart file every time new restart information is written and
FREQUENCY=N writes restart information every N timesteps. To
restart the job, create a new input file newJobName with only a
single line:
*RESTART, READ
Then run Abaqus specifying both the new and old job names:
##
#inactive abaqus jobname=newJobName oldjob=oldJobName

↪ scratch=${TMPDIR}

Listing 4.4: Contents of file ”run_abaqus.smp_modeḟor_single_compute_-
node.sh’
A copy is available from path /cluster/sfw/lido3-examples/
abaqus/run_abaqus.smp_mode.for_single_compute_
node.sh

The files

example.inp user_function01.f

should obviously be replaced with your own Abaqus input files.

4.5.3.2 On multiple compute nodes

You can use Abaqus on more than one computing node. The main difference is that
you need to tell Abaqus which compute node the Slurm scheduler has picked out for
the Slurm job. The listing 4.4 needs a few more tweaks, though, for a simulation with
2 compute nodes with 20 cores each, i.e. 40 parallel Abaqus processes, for 90 minutes:

#!/bin/bash -l

#SBATCH --job-name=abaqusjob2
#SBATCH --partition=short
#SBATCH --time 01:30:00
Request 2x20 CPU cores in order to run Abaqus with 40 MPI
↪ processes

#SBATCH --nodes=2 --ntasks-per-node=20 --cpus-per-task=1
#SBATCH --mem=50G # maximum memory required (in GB)
#inactive-SBATCH --mem=50000M # maximum memory required (in MB)
#SBATCH -o %x-%j.out # write standard output to a file

LiDO3 | First Contact page 125 of 216

IT & Medien Centrum | LiDO3 | First Contact

named after job name given above
and job ID assigned by Slurm.

#SBATCH -e %x-%j.err # write error messages a file
named after job name given above
and job ID assigned by Slurm

send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

change to directory where your Abaqus input files are stored
Typically, this is also the location where your Slurm job
script got submitted such that we can use a conveniently
set environment variable. Otherwise, specify the absolute
path to your Abaqus input files here instead.
The actual error message this avoids is, e.g.,
"dlopen of libhwloc.so failed"
cd $SLURM_SUBMIT_DIR

Abaqus can be activated using one of the following module
files. (Note that the list may have been extended since this
documenation got written.)
#inactive module load abaqus/2018-hotfix10
#inactive module load abaqus/2021-hotfix4
#inactive module load abaqus/2022-hotfix6
module load abaqus/2023

When working with user subroutines, the Intel Fortran compiler
2019 is required. It is provided by one of the
intel/studio-xe/19* modulefiles.
#inactive module load intel/studio-xe/19.0.3.203

Users must unset the SLURM environment variable SLURM_GTIDS.
Failure to do so will cause Abaqus to get stuck due to the
MPI that Abaqus ships with not supporting the SLURM
scheduler. (SLURM_GTIDS should be unset for both
interactive/GUI and batch jobs.)
unset SLURM_GTIDS

By default, Abaqus will use /tmp to store temporary files.
But /tmp on LiDO3 compute nodes has a capacity of merely 36

LiDO3 | First Contact page 126 of 216

IT & Medien Centrum | LiDO3 | First Contact

GiB. Whereas the dedicated local file space /scratch provides
up to 1.8 TiB. So, use the latter to avoid risking to overflow
the root file system, causing a compute node to freeze.
But, to the LiDO team's knowledge, Abaqus sets the variable
MPI_WORKDIR relative to the path given by Abaqus' command line
option 'scratch'. At the same time, MPI_WORKDIR must be a
path that is globally accessible by all MPI processes on all
compute nodes. Such that MPI_WORKDIR must not be set to a
local file system. So, for the time being, do not tamper
with 'scratch=${TMPDIR}' on the Abaqus command line when
using 'mp_mode=mpi'.

Let Abaqus know which compute nodes we got assigned from Slurm:
Locate and copy the default abaqus_v6.env from the currently
enabled Abaqus version to the current directory. Then tweak it.
rm -f abaqus_v6.env
cp -a $(find $(dirname $(dirname $(which abaqus))) -name
↪ "abaqus_v6.env") .

srun hostname | xargs -n 1 | while read hostname; do echo
↪ "['${hostname}',1]"; done | paste -sd, | sed -e
↪ 's/^/mp_host_list=[/; s/$/]/;' >> abaqus_v6.env;

===
Finally, invoke Abaqus for batch job execution.
##
To avoid having to adjust both the '#SBATCH --cpus-per-task=..'
line above and the abaqus invocation line below (and avoid
risking configuration mismatches) use the conveniently set
Slurm environment variable SLURM_CPUS_ON_NODE to tell Abaqus
how many CPU cores are available once this Slurm job runs.
##
Unfortunately, Slurm does not set such a variable for the
max. memory. (Its value can be queried by 'ulimit -m' from
this job script when the job runs.) So, when using the Abaqus
option "memory=..." make sure that its value matches that of
the leading #SBATCH --mem="..." line.
##
Uncomment the appropriate line marked with '#inactive' and
adapt it to your needs.

LiDO3 | First Contact page 127 of 216

IT & Medien Centrum | LiDO3 | First Contact

abaqus job=example mp_mode=mpi cpus=${SLURM_CPUS_ON_NODE}
↪ parallel=domain domains=${SLURM_NTASKS}
↪ cpus=${SLURM_NTASKS} dynamic_load_balancing=on double
↪ interactive

Listing 4.5: Contents of file ”run_abaqus.mpi_mode.for_multiple_compute_-
nodes.sh’
A copy is available from path /cluster/sfw/lido3-examples/
abaqus/run_abaqus.mpi_mode.for_multiple_compute_nodes.sh

4.5.4 Common software example: Ansys CFX
4.5.4.1 On a single compute node

To run Ansys CFX on a single compute node, invoke the following script via

sbatch run_cfx_single_node_through_slurm.sh

It asks for 1 compute node with 20 cores for 90 minutes:

#!/bin/bash -l

#SBATCH --job-name phi1
#SBATCH --partition=short
#SBATCH --time 01:30:00
#SBATCH --exclusive
#SBATCH --nodes=1-1 # min 1 node, max 1 node
#SBATCH --ntasks-per-node=20
#SBATCH --cpus-per-task=1 # one cpu per job (hence, 20 cpus)
#SBATCH -o %N-%j.out # STDOUT
#SBATCH -e %N-%j.err # STDERR
send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

change to directory where job file got submitted
cd $SLURM_SUBMIT_DIR

show a number of interesting environment variables
echo "sbatch: START SLURM_JOB_ID ${SLURM_JOB_ID}"

LiDO3 | First Contact page 128 of 216

IT & Medien Centrum | LiDO3 | First Contact

echo " (SLURM_TASK_PID ${SLURM_TASK_PID})"
echo " on ${SLURMD_NODENAME}"
echo "sbatch: SLURM_JOB_NODELIST ${SLURM_JOB_NODELIST}"
echo "sbatch: SLURM_JOB_ACCOUNT ${SLURM_JOB_ACCOUNT}"
echo "sbatch: SLURM_NTASKS ${SLURM_NTASKS}"
echo "sbatch: SLURM_CPUS_ON_NODE ${SLURM_CPUS_ON_NODE}"
echo "sbatch: SLURM_JOB_NAME ${SLURM_JOB_NAME}"

locate CFX
module load cfx/19.1

run CFX
cfx5solve \

-batch \
-def Fluid_Flow_CFX.def \
-initial Start_Values.res \
-start-method "Intel MPI Local Parallel" \
-partition ${SLURM_NTASKS} \
-double

With newer CFX versions, you might want to try as well
#module load openmpi/mpi_thread_multiple/no_cuda/4.0.3 cfx/2019R3
#cfx5solve \
-batch \
-def Fluid_Flow_CFX.def \
-initial Start_Values.res \
-start-method "Open MPI Local Parallel" \
-partition ${SLURM_NTASKS} \
-double

Listing 4.6: Contents of file ’run_cfx_single_node_through_slurm.sh’

The files

Fluid_Flow_CFX.def Start_Values.res

should obviously be replaced with your own Ansys CFX Solver Input File and Ansys
CFX Results File, respectively.

4.5.4.2 On multiple compute nodes

To use multiple compute nodes at once, one firstly has to pass a list of hosts to
CFX. This is done by first assembling this list via

LiDO3 | First Contact page 129 of 216

IT & Medien Centrum | LiDO3 | First Contact

Generate a comma-separated list of hostnames of
compute nodes (plus multiplicity)
MYHOSTLIST=$(srun hostname | sort | uniq -c | \

awk '{print $2 "*" $1}' | paste -sd,)
echo $MYHOSTLIST

Later on, this list is passed to CFX with the additional parameter

cfx5solve -par-dist "$MYHOSTLIST"

Secondly, the Slurm job script needs to be slightly tweaked. The following listing shows
a setup that uses 60 cores on 3 compute nodes:

#!/bin/bash -l

#SBATCH --job-name mycfxsimulation
#SBATCH --partition=short
#SBATCH --time 01:30:00
#SBATCH --exclusive
#SBATCH --nodes=3-3 # min 3 nodes, max 3 nodes
#SBATCH --ntasks-per-node=20
#SBATCH --cpus-per-task=1 # one cpu per job (hence, 20 cpus)
#SBATCH -o %N-%j.out # STDOUT
#SBATCH -e %N-%j.err # STDERR
send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

change to directory where job file got submitted
cd ${SLURM_SUBMIT_DIR}

show a number of interesting environment variables
echo "sbatch: START SLURM_JOB_ID ${SLURM_JOB_ID}"
echo " (SLURM_TASK_PID ${SLURM_TASK_PID})"
echo " on ${SLURMD_NODENAME}"
echo "sbatch: SLURM_JOB_NODELIST ${SLURM_JOB_NODELIST}"
echo "sbatch: SLURM_JOB_ACCOUNT ${SLURM_JOB_ACCOUNT}"
echo "sbatch: SLURM_NTASKS ${SLURM_NTASKS}"
echo "sbatch: SLURM_CPUS_ON_NODE ${SLURM_CPUS_ON_NODE}"
echo "sbatch: SLURM_JOB_NAME ${SLURM_JOB_NAME}"

LiDO3 | First Contact page 130 of 216

IT & Medien Centrum | LiDO3 | First Contact

Generate a comma-separated list of hostnames of compute nodes
(plus multiplicity)
MYHOSTLIST=$(srun hostname | sort | uniq -c | \

awk '{print $2 "*" $1}' | paste -sd,)

locate CFX
module load cfx/19.1

run CFX
cfx5solve \

-batch \
-def Fluid_Flow_CFX.def \
-initial Start_Values.res \
-parallel \
-start-method "Intel MPI Distributed Parallel" \
-par-dist "${MYHOSTLIST}" \
-partition ${SLURM_NTASKS} \
-double

Listing 4.7: Contents of file ’run_cfx_multiple_nodes_through_slurm.sh’

Thirdly, CFX uses SSH for the communication between nodes. Thus you need to setup
passphrase-less inter-node SSH access (see section 4.2.5 on page 58), if you are using
multiple nodes at once.

4.5.5 Common software example: Ansys Fluent
4.5.5.1 On a single compute node

The following script, when invoked via

sbatch run_fluent.sh

asks for 1 compute node with 20 cores for 60 minutes and all 60 GiB on that compute
node for exclusive usage:

#!/bin/bash -l

#SBATCH --job-name myfluentsimulation
#SBATCH --partition=short
#SBATCH --time 0-01:00:00
#SBATCH --mem 60G --exclusive
#SBATCH --nodes=1 --ntasks-per-node=20 --cpus-per-task=1

LiDO3 | First Contact page 131 of 216

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH --error=slurmjob.%j.stderr
#SBATCH --output=slurmjob.%j.stdout
send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

export FLRECENT="${SLURM_SUBMIT_DIR}"
export OMP_NUM_THREADS=1

load modulefiles for Ansys Fluent
module purge
module load openmpi/mpi_thread_multiple/no_cuda/4.1.1
module load fluent/2023R1

run the fluent simulation
fluent 3ddp -g -cflush -t ${SLURM_NTASKS} -pib -mpi=openmpi -i
↪ mycase.jou

Listing 4.8: Contents of file ’run_fluent_single_compute_node.sh’

The file

mycase.jou

should obviously be replaced with your own Ansys Fluent problem description file.

4.5.5.2 On multiple compute nodes

You can use Ansys Fluent on more than one computing node. The main difference is
that you need to tell Ansys Fluent which nodes the Slurm scheduler has picked out for
the Slurm job. The listing 4.8 needs slight tweaking for a simulation with 4 compute
nodes with 20 cores each, i.e. 80 parallel Fluent processes, for 2 days and 30 minutes
and 60 GiB per compute node for exclusive usage:

#!/bin/bash -l

#SBATCH --job-name myfluentsimulation
#SBATCH --partition=long
#SBATCH --time 2-00:30:00
#SBATCH --mem 60G --exclusive

LiDO3 | First Contact page 132 of 216

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH --nodes=4 --ntasks-per-node=20 --cpus-per-task=1
#SBATCH --error=slurmjob.%j.stderr
#SBATCH --output=slurmjob.%j.stdout
send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

export FLRECENT="${SLURM_SUBMIT_DIR}"
export OMP_NUM_THREADS=1

generate node list
NODELIST=$(for node in $(scontrol show hostnames
↪ ${SLURM_JOB_NODELIST} | uniq); do echo
↪ "${node}:${SLURM_NTASKS_PER_NODE}"; done | paste -sd,)

calculate the number of cores actually used
CORES=$((${SLURM_JOB_NUM_NODES} * ${SLURM_NTASKS_PER_NODE}))

load modulefiles for Ansys Fluent
module purge
module load openmpi/mpi_thread_multiple/no_cuda/4.1.1
module load fluent/2023R1

run the fluent simulation
fluent 3ddp -g -cflush -t ${CORES} -cnf="${NODELIST}" -pib

↪ -mpi=openmpi -i mycase.jou

Listing 4.9: Contents of file ’run_fluent_multiple_compute_nodes.sh’

As before, the file

mycase.jou

mentioned in the command line to invoke Ansys Fluent inside your Slurm job script
should obviously be replaced with your own Ansys Fluent problem description file.

4.5.6 Common software example: Ansys Mechanical APDL
4.5.6.1 On a single compute node

In order to run Ansys Mechanical APDL on a single compute node, invoke the
following script via

LiDO3 | First Contact page 133 of 216

IT & Medien Centrum | LiDO3 | First Contact

sbatch run_ansys_smp_mode_single_node.sh

It asks for one compute node with 8 cores and 8 GB of main memory for 40 minutes
and will invoke Ansys Mechanical APDL with a single process and 8 threads. A copy
of it is available on LiDO3 from the path /cluster/sfw/lido3-examples/
ansys-mechanical/run_ansys.smp_mode.for_single_compute_
node.sh.

#!/bin/bash
#===
SLURM - job script template for Ansys Mechanical APDL
#===
#===
Slurm options
#===
#SBATCH --job-name=ansys_smp
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=8
#SBATCH --mem=8G
#SBATCH --time=00:40:00
#SBATCH --partition=short
#SBATCH --error=error_file.%j.e
#SBATCH --output=output_file.%j.o
send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

#===
Load modules
#===
module purge
module load ansys/2023R1
Ansys ships with all the required libraries, both Intel MPI
and Open MPI. There is no need to load any other of the
LiDO3 modulefiles for a standalone MPI installation.

Note that Ansys ships with all the required libraries, both for
Intel MPI and Open MPI libraries. There is no need to load any
other of the LiDO3 modulefiles for a standalone MPI
installation.

Change to directory where input file is stored (see input_file

LiDO3 | First Contact page 134 of 216

IT & Medien Centrum | LiDO3 | First Contact

definition below) and where result files should be saved to.
directoryForInputAndOutput=${SLURM_SUBMIT_DIR}

#===
Prepare variable parts of Ansys command line options
#===
job_name=ansys_result
input_file=testlido.dat

Some Slurm environment variables may only be set if they were
explicitly passed to Slurm, either on the command line or in the
Slurm job script. Set them to 1, if unset.
(Note: the leading colons are there on purpose, indeed. This is
bash syntax for a conditional assignment.)
: ${SLURM_NTASKS:=1}
: ${SLURM_CPUS_PER_TASK:=1}

Calculate now the argument to the Ansys command line option -np,
i.e. the total number of requested (MPI or OpenMP)
processes. (Of couse, you could hardcode the number passed as
argument to -np in the ansys invocation line. But experience
has shown that hardcoding is too errorprone. When tends to
forget to adapt one of the two locations when one adapts this
script to request from Slurm more or less compute resources:
either the SBATCH line or the ansys invocation line.)
numberOfProcesses=$(((${SLURM_NTASKS} * ${SLURM_CPUS_PER_TASK}
↪)))

#===
Program execution
#===
help screen for interactive job
#anshelp

Start calculation in batch mode in shared-memory
↪ multiprocessing (SMP) mode,

i.e. on a single compute node
cd ${directoryForInputAndOutput}

ansysXXX command line options explained:
-b, -b list, -b nolist
Run in batch mode, taking input from standard input or
the file specified with -i.
"-b" and "-b list" are synonymous and both cause the
input file contents to be echoed into the output file.
"-b nolist" does not include the input commands in the
output file.

LiDO3 | First Contact page 135 of 216

IT & Medien Centrum | LiDO3 | First Contact

-dir dirname
Specifies which directory to solve in. By default, it
will be the directory you launch the executable from.
But you may want to write files into a different
location.
-i filename
Specify the name of the input file in the working
directory to read as input
-o filename
Specify the name of the output file in the working
directory to place output into.
-j jobname
By default, the jobname is "file" and all files
created are file.nnn. Specify a unique name as a
string for jobname.
The value is unrelated to the Slurm jobname.
-np n
This specifies the number of processors to use during
solve.
-m value
Defines the total memory to reserve for the program.
The ANSYS documentation recommends to reserve the
required memory up front rather than letting ANSYS
grab as it needs.
However, within a running Slurm job, it should not be
necessary to reserve the memory up front and we have
so far no reason to state otherwise! Why? You are
guaranteed to receive as much memory for the duration
of your Slurm job as you requested once the Slurm job
started. No other process can eat away your RAM
(unless you log in to the compute node interactively
via 'ssh' and start other memory-intensive processes.)
On a ordinary server - without Slurm supervision -
where anybody can log in and start new processes while
your process is already running, on the other hand,
processes can indeed fight over memory such that it
reserving everything ANSYS might need up front avoids
seeing ANSYS crash late in a simulation due to low
remaining RAM.
-s read, -s noread
Specifies whether the program reads the "start.ans"
file at start-up from where ANSYS got installed (typ-
ically /cluster/sfw/ansys/*/*/ansys/apdl/start.ans).
If you omit the -s option, ANSYS reads the start.ans
file in interactive mode and not in batch mode.
-l language
Specifies a language file to use other than
US English.

LiDO3 | First Contact page 136 of 216

IT & Medien Centrum | LiDO3 | First Contact

-smp
Stands for shared-memory multiprocessing.
Run ANSYS with multiple threads (when you requested
only a single compute node, i.e. used
'#SBATCH --nodes=1' above)
-dis
Enables Distributed ANSYS. See the Parallel Processing
Guide for more information.
-mpi intelmpi, -mpi openmpi
Specifies the type of MPI to use. "-mpi intelmpi" and
"-mpi openmpi" should both work smoothly on LiDO3.
See the Parallel Processing Guide for more
information.
-machines string
Specifies the machines (in "string", using colons as
separators, without whitespaces) on which to run a
Distributed ANSYS analysis.
Example: cstd01-001:20:cstd01-002:20:cstd01-003:20
Dynamically determined in this Slurm job script
template.
See Starting Distributed ANSYS in the Parallel
Processing Guide for more information.
ansys231 -b -j ${job_name} -dir ${directoryForInputAndOutput} -i
↪ ${input_file} -s read -l en-us -smp -np ${numberOfProcesses}

Listing 4.10: Contents of file ’run_ansys.smp_mode.for_single_compute_-
node.sh’
A copy is available from path /cluster/sfw/lido3-examples/
ansys-mechanical/run_ansys.smp_mode.for_single_compute_
node.sh

4.5.6.2 On multiple compute nodes

In order to run Ansys Mechanical APDL on multiple compute nodes, it is mandatory
to set up passphrase-less inter-node SSH access (see section 4.2.5 on page 58). Because
Ansys Mechanical APDL uses SSH to initially set up the MPI environment required for
a cross-node simulation.
With passphrase-less inter-node SSH access in place, invoke the following script via

sbatch run_ansys_distributed_mode_multiple_nodes.sh

LiDO3 | First Contact page 137 of 216

IT & Medien Centrum | LiDO3 | First Contact

It asks for two compute nodes, each with 20 cores and 30 GB of main memory for 40
minutes. A copy of the Slurm job template to run Ansys Mechanical APDL as shown in
listing 4.11 is available on LiDO3 from the path /cluster/sfw/lido3-examples/
ansys-mechanical/run_ansys.distributed_mode.for_multiple_
compute_nodes.sh.

#!/bin/bash
#===
SLURM - job script template for Ansys Mechanical APDL
#===
#===
Slurm options
#===
#SBATCH --job-name=ansys_dis
#SBATCH --nodes=2 --ntasks-per-node=1 --cpus-per-task=20
#optional: use compute nodes with higher bandwidth interconnect:
↪ SBATCH --constraint=cstd02

#SBATCH --mem=30G
#SBATCH --time=00:40:00
#SBATCH --partition=short
#SBATCH --error=error_file.%j.e
#SBATCH --output=output_file.%j.o
send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

#===
Load modules
#===
module purge
module load ansys/2023R1
Ansys ships with all the required libraries, both Intel MPI
and Open MPI. There is no need to load any other of the
LiDO3 modulefiles for a standalone MPI installation.

Note that Ansys ships with all the required libraries, both for
Intel MPI and Open MPI libraries. There is no need to load any
other of the LiDO3 modulefiles for a standalone MPI
installation.

Change to directory where input file is stored (see input_file
definition below) and where result files should be saved to.
directoryForInputAndOutput=${SLURM_SUBMIT_DIR}

LiDO3 | First Contact page 138 of 216

IT & Medien Centrum | LiDO3 | First Contact

#===
Prepare variable parts of Ansys command line options
#===
job_name=ansys_result
input_file=testlido.dat

Some Slurm environment variables may only be set if they were
explicitly passed to Slurm, either on the command line or in the
Slurm job script. Set them to 1, if unset.
(Note: the leading colons are there on purpose, indeed. This is
bash syntax for a conditional assignment.)
: ${SLURM_JOB_NUM_NODES:=1}
: ${SLURM_NTASKS:=1}
: ${SLURM_NTASKS_PER_NODE:=1}
: ${SLURM_CPUS_PER_TASK:=1}

Calculate now the argument to the Ansys command line option -np,
i.e. the total number of requested (MPI or OpenMP)
processes. (Of couse, you could hardcode the number passed as
argument to -np in the ansys invocation line. But experience
has shown that hardcoding is too errorprone. When tends to
forget to adapt one of the two locations when one adapts this
script to request from Slurm more or less compute resources:
either the SBATCH line or the ansys invocation line.)
numberOfProcesses=$(((${SLURM_JOB_NUM_NODES} *
↪ ${SLURM_NTASKS_PER_NODE} * ${SLURM_CPUS_PER_TASK})))

When running Distributed Ansys across multiple hosts, we need to
specify the number of cores we want to use on each machine. (The
following instruction assumes a homogeneous compute node
request: the same number of tasks and cpus-per-task on each
compute node.)
numberOfProcessesPerNode=$(((${SLURM_NTASKS_PER_NODE} *
↪ ${SLURM_CPUS_PER_TASK})))

machinesString=$(scontrol show hostnames | sed -e
↪ "s/\$/:${numberOfProcessesPerNode}/" | paste -sd:)

#DEBUG echo ${machinesString}

#===
Program execution
#===
help screen for interactive job
#anshelp

Start calculation in batch mode in distributed mode, i.e. on
multiple compute nodes
cd ${directoryForInputAndOutput}

LiDO3 | First Contact page 139 of 216

IT & Medien Centrum | LiDO3 | First Contact

ansysXXX command line options explained:
-b, -b list, -b nolist
Run in batch mode, taking input from standard input or
the file specified with -i.
"-b" and "-b list" are synonymous and both cause the
input file contents to be echoed into the output file.
"-b nolist" does not include the input commands in the
output file.
-dir dirname
Specifies which directory to solve in. By default, it
will be the directory you launch the executable from.
But you may want to write files into a different
location.
-i filename
Specify the name of the input file in the working
directory to read as input
-o filename
Specify the name of the output file in the working
directory to place output into.
-j jobname
By default, the jobname is "file" and all files
created are file.nnn. Specify a unique name as a
string for jobname.
The value is unrelated to the Slurm jobname.
-np n
This specifies the number of processors to use during
solve.
-m value
Defines the total memory to reserve for the program.
The ANSYS documentation recommends to reserve the
required memory up front rather than letting ANSYS
grab as it needs.
However, within a running Slurm job, it should not be
necessary to reserve the memory up front and we have
so far no reason to state otherwise! Why? You are
guaranteed to receive as much memory for the duration
of your Slurm job as you requested once the Slurm job
started. No other process can eat away your RAM
(unless you log in to the compute node interactively
via 'ssh' and start other memory-intensive processes.)
On a ordinary server - without Slurm supervision -
where anybody can log in and start new processes while
your process is already running, on the other hand,
processes can indeed fight over memory such that it
reserving everything ANSYS might need up front avoids
seeing ANSYS crash late in a simulation due to low

LiDO3 | First Contact page 140 of 216

IT & Medien Centrum | LiDO3 | First Contact

remaining RAM.
-s read, -s noread
Specifies whether the program reads the "start.ans"
file at start-up from where ANSYS got installed (typ-
ically /cluster/sfw/ansys/*/*/ansys/apdl/start.ans).
If you omit the -s option, ANSYS reads the start.ans
file in interactive mode and not in batch mode.
-l language
Specifies a language file to use other than
US English.
-smp
Stands for shared-memory multiprocessing.
Run ANSYS with multiple threads (when you requested
only a single compute node, i.e. used
'#SBATCH --nodes=1' above)
-dis
Enables Distributed ANSYS. See the Parallel Processing
Guide for more information.
-mpi intelmpi, -mpi openmpi
Specifies the type of MPI to use. "-mpi intelmpi" and
"-mpi openmpi" should both work smoothly on LiDO3.
See the Parallel Processing Guide for more
information.
-machines string
Specifies the machines (in "string", using colons as
separators, without whitespaces) on which to run a
Distributed ANSYS analysis.
Example: cstd01-001:20:cstd01-002:20:cstd01-003:20
Dynamically determined in this Slurm job script
template.
See Starting Distributed ANSYS in the Parallel
Processing Guide for more information.

Using Intel MPI
ansys231 -b -j ${job_name} -dir ${directoryForInputAndOutput} -i

↪ ${input_file} -s read -l en-us -np ${numberOfProcesses}
↪ -dis -mpi intelmpi -machines ${machinesString}

Using Open MPI

LiDO3 | First Contact page 141 of 216

IT & Medien Centrum | LiDO3 | First Contact

#ansys231 -b -j ${job_name} -dir ${directoryForInputAndOutput} -i
↪ ${input_file} -s read -l en-us -np ${numberOfProcesses}
↪ -dis -mpi openmpi -machines ${machinesString}

Listing 4.11: Contents of file ’run_ansys.distributed_mode.for_multiple_-
compute_nodes.sh
A copy is available from path /cluster/sfw/lido3-examples/
ansys-mechanical/run_ansys.distributed_mode.
for_multiple_compute_nodes.sh

4.5.7 Common software example: Ansys Workbench
Ansys Workbench is launched via the command runwb2 after an Ansys module was
loaded. If you want to use it interactively, it is strongly recommended to use a ThinLinc
session (for using ThinLinc, see section 4.2.4 Cendio ThinLinc). The alternative, SSH
shells with X forwarding (within Linux or Windows), can cause run time issues.
Within a ThinLinc session open a terminal window and enter:

module load ansys/2023R1

salloc -N1 --mem=60G -c20 --exclusive -p short

After that, do not run the srun command. This is very important. Instead, look
for the allocated node of your job and connect from a different shell in your running
ThinLinc session via ssh to this node. It is also important not to choose insufficient
parameters for memory or cores. We recommend to use the node exclusively (i.e. use
the Slurm option --exclusive).
Next, temporarily – for the remainder of this running shell – change your home directory
to your work directory (or a subdirectory therein). The benefit of it being that this
temporay home directory of yours is writable to on compute nodes. (Remember that
your home directory is read-only on the compute nodes, see section 4.3.2.1.)

ssh -X <node>
export HOME=/work/<yourusername>

The following changes your working directory to this temporary home directory. To
avoid that Ansys Workbench will be launched from somewhere inside your default home
directory (i.e. some subdirectory of /home/$USER) in the subsequent line. Finally,
runwb2 launches the workbench window.

LiDO3 | First Contact page 142 of 216

IT & Medien Centrum | LiDO3 | First Contact

cd ~/
runwb2

4.5.8 Common software example: Gaussian
In order to use Gaussian on the LiDO3 cluster, three prerequisites need to be fulfilled:
Firstly, you need to enlist to the user list kept at the Faculty of Chemistry and Chemical
Biology’s dean’s office. This is stipulated by the Gaussian license. Secondly, you need
to be added to the unix group gaussian on LiDO3. Thirdly, for financial accounting
reasons, you need to tell Slurm that you intend to use Gaussian and with how many
cores you intend to do so. On Slurm job submission, the latter is checked; sbatch
will show a screen message if the option --license=gaussian:X has not been
provided at all or with a number that does not correspond to the number of cores
requested.
The following script, when invoked via

sbatch run_gaussian_single_node_through_slurm.sh

asks for 1 compute node with 10 cores, 15 GB memory for 240 minutes and 10 Gaussian
licenses for the duration of 4 hours. A copy of this Slurm job template as shown in list-
ing 4.12 is available on LiDO3 from the path /cluster/sfw/lido3-examples/
↪ gaussian/run_gaussian_single_node_through_slurm.sh.

#!/bin/sh

#SBATCH --partition=med
#SBATCH --nodes=1 --tasks-per-node=10 --cpus-per-task=1
#SBATCH --time=4:00:00

Let Slurm know that you will be using as many Gaussian licenses
as you asked for compute cores, using the same value as for
--tasks-per-node
#SBATCH --license=gaussian:10

memory requirement for all CPUs in megabytes
#SBATCH --mem=15000

#SBATCH --job-name=Gaussian_simulation_H2O

PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!

LiDO3 | First Contact page 143 of 216

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH --output=/work/myusername/slurm_job%A
#SBATCH --error=/work/myusername/slurm_job%A

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de
#SBATCH --mail-type=TIME_LIMIT

When a job is within 120 seconds of its end time,
send it the signal SIGQUIT.
Note 1: due to the resolution of event handling
by Slurm, the signal may be sent up to 60
seconds earlier than specified.
Note 2: only *one* signal can be defined. Later
Slurm signal definition override earlier
definitions.
#SBATCH --signal=B:SIGQUIT@120

Change to the directory where your Gaussian input files
are stored.
PLEASE CHANGE this path to the actual one!
cd /work/${USER}/gaussian/task123

stores the hostname in a text file
srun hostname -s > slurmhosts.${SLURM_JOB_ID}.txt

tweak environment settings to be able to use the
gaussian version you need (for example the latest version)
module load gaussian/16/Rev.C01-with-ATLAS-BLAS

to save off your local working directory on /work
where your input files are located
export wdir=`pwd`

Point the directory Gaussian uses to store large files to a
directory on a local file system (as opposed to, e.g., the
parallel file system of LiDO3).
export GAUSS_SCRDIR=/scratch/${SLURM_JOBID}

In the case your job prematurely terminates (i.e. wall time
exceeded, job cancellation via 'scancel'), several temporary
files Gaussian created will be left in the /scratch directory.
This has led multiple times in the past to a situation where
the local /scratch directories filled up quicker than the
automatic cleanup script would remove the orphaned files.
##
To save off your data and clean up the /scratch when a job

LiDO3 | First Contact page 144 of 216

IT & Medien Centrum | LiDO3 | First Contact

aborts, a trap function can be used. It is called once the
login shell intercepts certain system signal (here: either one
of the signals USR1, SIGQUIT, SIGINT, SIGABRT, SIGKILL, SIGHUP,
SIGTERM, EXIT, TERM).
finalize_job()
{

printf "%s Shell function finalize_job invoked\n\n" "$(date)"

cp -u ${GAUSS_SCRDIR}/* ${wdir}
rm -rf ${GAUSS_SCRDIR}

}
trap -- 'finalize_job' USR1 SIGQUIT SIGINT SIGABRT SIGKILL \

SIGHUP SIGTERM EXIT TERM

Your simulation will run faster if you point GAUSS_SCRDIR
(the directory Gaussian uses to store large files that will
be deleted after the job terminates successfully) to a local
file system, not to /work. So, create a directory for
your calculcations on the current node and copy your input
files to this scratch folder. To make the directory name
unique, use the variable $SLURM_JOBID defined automatically
by SLURM.
mkdir ${GAUSS_SCRDIR}
cp -a * ${GAUSS_SCRDIR}/
cd ${GAUSS_SCRDIR}

Run single-threadedly
unset OMP_NUM_THREADS

start your Gaussian calculation
NOTES:
* Please adapt the expression within <> in your own script!
* The '&' to start Gaussian and the 'wait' command are
mandatory for this to work. The shell needs to intercept the
system signals, if Gaussian runs in foreground, the 'trap'
will get seemingly ignored.
g16 <your-gaussian-input.gin> &
wait

IMPORTANT: At the end of your job you will need to copy
everything back from scratch to your original
work directory. Otherwise, your results will get lost,
because you can not access the local file system that
easy and more - and contents in /scratch not belonging to
a running job any more get cleaned at regular intervalls
automatically.
Given that we already have a shell function that takes
care of this task when the Slurm job aborts, rely on it

LiDO3 | First Contact page 145 of 216

IT & Medien Centrum | LiDO3 | First Contact

for a Gaussian simulation that ran smootly, too.
printf "%s Start salvaging Gaussian output from local hard disk
↪ drive to persistent storage\n\n" "$(date)"

finalize_job
printf "%s Finished salvaging Gaussian output from local hard
↪ disk drive to persistent storage\n\n" "$(date)"

Optional: remove trap definition
trap - USR1 SIGQUIT SIGINT SIGABRT SIGKILL \

SIGHUP SIGTERM EXIT TERM

Listing 4.12: Contents of file ’run_gaussian_single_node_through_slurm.sh’
A copy is available from path /cluster/sfw/lido3-examples/
gaussian/run_gaussian_single_node_through_slurm.sh

The file

your-gaussian-input.gin

mentioned in listing 4.12 should obviously be replaced with your own Gaussian problem
description file.

4.5.9 Common software example: Matlab
The following script, when invoked via

sbatch StartMatlabBatchJobViaSLURM.sh

asks for 1 compute node with 10 cores for 90 minutes:

#!/bin/bash -l
#SBATCH --job-name=MatlabSimulation
run at most for 0 days, 1 hour, 30 minutes and 15 seconds
#SBATCH --time=0-01:30:15
#SBATCH --partition=short
ask for ten compute cores on one compute node
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=10
memory requirement per core in megabytes
#SBATCH --mem-per-cpu=1536
PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
#SBATCH --output=/work/myusername/tmp/slurm_job
#SBATCH --error=/work/myusername/tmp/slurm_job

LiDO3 | First Contact page 146 of 216

IT & Medien Centrum | LiDO3 | First Contact

send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL
PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

If you intend to use the MathWorks Parallel Computing toolbox
(commands like 'parfor', 'parpool', 'parcluster'), but are
computing on a single compute node only, then uncomment the
following block.
##
Why do we recommend the following settings? Matlab uses a
subdirectory named ~/.matlab/local_cluster_jobs to store files
to synchronize the worker processes of Matlab threads started
in the background by Parallel Computing toolbox. For improved
I/O performance ~/.matlab is actually a shortcut (technically
a symbolic link) that redirects to /work/<user>/.matlab (see
section~\ref{subsec:sumbolic:linkhomedir} of the "LiDO3 First
Contact" document). So, Matlab writes - in the background -
temporary files to your $WORK directory and reads from them.
Matlab tends to not remove these files nor to clean up the
directory when simulations finish. Matlab expects you to do
this yourself. If you do not, more and more files accumulate
in this directory with every completed Matlab simulation.
Unfortunately - and there lies the performance problem -,
every time you are using the Parallel Computing toolbox in
later simulations, Matlab checks the contents of all files in
/work/<user>/.matlab/local_cluster_jobs once and then monitors
those files for changes. By asking the metadata servers of the
parallel file system whether the file has changed (technically
'stat <filename>' is called internally). Dozens of times per
second. If several Matlab simulations are running concurrently
and the /work/<user>/.matlab/local_cluster_jobs contains a few
thousand files already, the metadata servers of the parallel
file system get tens of thousand 'stat' requests per second,
most of which are pointless because they are for temporary
files for long-completed simulations.
Solution: Have Matlab stores these temporary files on a local
file system, not the parallel file system. Local 'stat'
commands are faster anyway, simulation is run on a single
compute node anyway such that synchronisation via the parallel
file system is overkill.
(Another solution would be to frequently wipe the entire
directory ~/.matlab/local_cluster_jobs, but that could only be
done safely if no Matlab simulation is running any more.
Automating that is more complicated that redirecting Matlab to
store the temporary files on a local scratch file system.)
Change default 'prefdir' setting from ~/.matlab/R2022a

LiDO3 | First Contact page 147 of 216

IT & Medien Centrum | LiDO3 | First Contact

export MATLAB_PREFDIR=/scratch/${LOGNAME}/.matlab/R2022a
test -d ${MATLAB_PREFDIR} || mkdir -p ${MATLAB_PREFDIR}

PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
cd /work/myusername/tmp
module purge
module load matlab/r2022b

Run the Matlab simulation, stored in
/work/myusername/tmp/matlab_main.m
srun matlab -nodisplay -nosplash -r 'matlab_main; quit;'

Uncomment this block, too, if you are relying on MathWorks
Parallel Computing toolbox.
Check whether other Matlab instances are running on the
same compute node (started from concurrently running Slurm
jobs). If not, remove the directory Matlab used internally
to synchronise parallel workers. Matlab tends to not clean
up this directory itself (see https://www.mathworks.com/
help/parallel-computing/run-code-on-parallel-pools.html)
How do we check for other Slurm jobs of our own? By
counting the number of processes that invoke a Slurm job
script. If it is more than one, other Slurm jobs of ours
are running on the very same compute node, too.
if test "$(ps --user ${LOGNAME} --no-headers -f | grep -c
↪ '/var/spool/slurm/d/job.*/slurm_script')" -eq 1; then

echo "Deleting ${MATLAB_PREFDIR}"
rm -rf ${MATLAB_PREFDIR}
fi

Listing 4.13: Contents of file ’StartMatlabBatchJobViaSLURM.sh’

Once Slurm grants these resources, Matlab’s command line interface get invoked on the
assigned compute node, spawns as many Matlab worker processes as cores requested
in the Slurm job script in order to calculate in parallel an estimate for the value of π:

pc = parcluster('local')

% use a fixed number of Matlab worker processes, e.g. 5
%% parpool(pc, 5)

% automatically choose as many Matlab worker processes as cores
% requested in Slurm job file
parpool(pc, str2num(getenv('SLURM_CPUS_ON_NODE')))

% run Matlab simulation that uses commands like 'parfor',

LiDO3 | First Contact page 148 of 216

IT & Medien Centrum | LiDO3 | First Contact

% 'parfeval', 'parfevalOnAll', 'spmd' or 'distributed' to have
% Matlab automatically distribute the workload on multiple
% worker processes
EstimatePi

Listing 4.14: Contents of file ’matlab_main.m’

relying on the helper script

% Calculate the value of Pi using a Monte Carlo simulation
itmax=1e9;
n=0;

tic;
parfor i = 1:itmax

x=rand;
y=rand;
if (x^2 + y^2 < 1.0)

n=n+1;
end

end
elapsedTime = toc;

pi = 4.0 * n / itmax;
fprintf("Calculating pi = %.10f took %s seconds\n", pi,
↪ elapsedTime);

Listing 4.15: Contents of file ’EstimatePi.m’

4.5.10 Common software example: ORCA
4.5.10.1 On a single compute node

In order to run ORCA71 you may find the following Slurm job script helpful. It asks
for 1 compute node with 20 cores for exclusive usage, i.e. no concurrent Slurm job
can consume RAM, CPU or local hard disk drive ressources, as much main memory
as available for 2 days. ORCA will use the local hard disk partition /scratch for
temporary and result files. The Slurm job script takes care that upon simulation end
the results are transferred to the parallel file system; it also remove files written to
/scratch in case the job is cancelled, e.g. due to have reached the requested time
limit.

71https://en.wikipedia.org/wiki/ORCA_(quantum_chemistry_program)

LiDO3 | First Contact page 149 of 216

https://en.wikipedia.org/wiki/ORCA_(quantum_chemistry_program)
https://en.wikipedia.org/wiki/ORCA_(quantum_chemistry_program)

IT & Medien Centrum | LiDO3 | First Contact

#!/bin/bash -l

#SBATCH --partition=long
#SBATCH --time=2-0:00:00
#SBATCH --nodes=1 --tasks-per-node=20 --cpus-per-task=1
#SBATCH --exclusive
Let Slurm know that you want the entire main memory, every
megabyte not needed for the operating system itself.
#SBATCH --mem=0
#SBATCH --job-name=orca-simulation-123
#SBATCH --output=%x-%j.out # write standard output to a file

named after job name given above
and job ID assigned by Slurm.

#SBATCH --error=%x-%j.err # write error messages a file
named after job name given above
and job ID assigned by Slurm

Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

When a job is within 120 seconds of its end time,
send it the signal SIGQUIT.
Note 1: due to the resolution of event handling
by Slurm, the signal may be sent up to 60
seconds earlier than specified.
Note 2: only *one* signal can be defined. Later
Slurm signal definition override earlier
definitions.
#SBATCH --signal=B:SIGQUIT@120

Change to the directory where your ORCA input files
are stored.
PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
cd /work/myusername/orca/task123

Input file for ORCA simulation
PLEASE CHANGE orca.inp TO THE ACTUAL INPUT FILE NAME!
INPUT_FILE=orca.inp

Store the simulation results to this very directory
WORK_DIRECTORY_TO_STORE_RESULTS=$PWD

ORCA version to use. See 'module avail orca' for available
versions
module purge

LiDO3 | First Contact page 150 of 216

IT & Medien Centrum | LiDO3 | First Contact

module load orca/4.2.1-shared

ORCA writes quite sizeable files and reads from these
temporary files. In order to speed up this I/O that glues
together the individual programs an ORCA simulation run will
subsequently and automatically start point ORCA to a local file
system (as opposed to, e.g., the parallel file system of LiDO3)
for these temporary files.
This has also a run time benefit of approximately 15 \% for,
e.g., the component ORCA-CIS/TD-DFT.
LOCAL_COMPUTE_DIRECTORY=/scratch/${SLURM_JOB_ID}
mkdir -p ${LOCAL_COMPUTE_DIRECTORY}

If your job prematurely terminates (i.e. wall time exceeded,
job cancellation via 'scancel'), temporary and result files
↪ ORCA

created will be left in the /scratch directory.
This has led multiple times in the past to a situation where
the local /scratch directories filled up quicker than the
automatic cleanup script would remove the orphaned files.
##
To save off your data and clean up the /scratch when a job
aborts, a trap function can be used. It is called once the
login shell intercepts certain system signal (here: either one
of the signals USR1, SIGQUIT, SIGINT, SIGABRT, SIGKILL, SIGHUP,
SIGTERM, EXIT, TERM).
finalize_job()
{

echo "function finalize_job called at `date`"
rm --force *.tmp
cp --archive --update --verbose \

${LOCAL_COMPUTE_DIRECTORY}/* \
${WORK_DIRECTORY_TO_STORE_RESULTS}

rm --recursive --force ${LOCAL_COMPUTE_DIRECTORY}
}
trap -- 'finalize_job' USR1 SIGQUIT SIGINT SIGABRT SIGKILL \

SIGHUP SIGTERM EXIT TERM

Transfer ORCA input file(s) to the local hard disk drive
cp --archive --update --verbose \

${INPUT_FILE} \
${LOCAL_COMPUTE_DIRECTORY}

start your ORCA calculation
NOTES:
* ORCA prefers to get invoked by its absolute path. Hence
the prefixing of the 'which' command.
* The '&' at the end of the line that invokes ORCA and the

LiDO3 | First Contact page 151 of 216

IT & Medien Centrum | LiDO3 | First Contact

'wait' command are mandatory for this to work. The shell
needs to intercept the system signals; if ORCA runs in
foreground, the 'trap' will get seemingly ignored.
cd ${LOCAL_COMPUTE_DIRECTORY}
$(which --skip-alias orca) ${INPUT_FILE} &
wait

IMPORTANT: At the end of your job you will need to copy
everything back from scratch to your original
work directory. Otherwise, your results will get lost,
because you can not access the local file system that
easy and more - and contents in /scratch not belonging to
a running job any more get cleaned at regular intervalls
automatically.
finalize_job

Optional: remove trap definition
trap - USR1 SIGQUIT SIGINT SIGABRT SIGKILL \

SIGHUP SIGTERM EXIT TERM

Listing 4.16: Contents of file ’run_orca_single_node_through_slurm.sh’
A copy is available from path /cluster/sfw/lido3-examples/orca/
run_orca.for_single_compute_node.sh

Make sure to update your e-mail address, the path to the directory with the ORCA
input file(s), the ORCA input file name itself in your copy of the sample Slurm job script
in listing 4.16. Possibly, adapt the module load statement as well to use another
ORCA version. Let us assume you named your Slurm job script copy orca.slurm.
Then, on one of the gateways, submit this Slurm job script from an arbitrary path in
the parallel file system, e.g. the path where your ORCA input files are stored, via

cd /work/myusername/orca/task123
sbatch orca.slurm

The messages ORCA writes during execution to standard output and standard error
will be written to the directory where you invoked sbatch.

4.5.10.2 On multiple compute nodes

Please note that in case you intend to run an ORCA simulation that uses more than one
compute node, you can not – to our knowledge – benefit from faster I/O of the local
hard disk drive of a compute node. Because all involved ORCA processes need access
to one common file space; it must not be scattered to several different /scratch

LiDO3 | First Contact page 152 of 216

IT & Medien Centrum | LiDO3 | First Contact

file spaces on different compute nodes.72 So, ORCA has to read from and write to the
parallel file system directly. As a side effect, the manual cleanup is not required any
more. This simplifies the Slurm job script, to be run on 3 compute nodes, to:

#!/bin/bash -l

#SBATCH --partition=long
#SBATCH --time=2-0:00:00
#SBATCH --nodes=3 --tasks-per-node=20 --cpus-per-task=1
#SBATCH --exclusive
Let Slurm know that you want the entire main memory, every
megabyte not needed for the operating system itself.
#SBATCH --mem=0
#SBATCH --job-name=orca-simulation-123
#SBATCH --output=%x-%j.out # write standard output to a file

named after job name given above
and job ID assigned by Slurm.

#SBATCH --error=%x-%j.err # write error messages a file
named after job name given above
and job ID assigned by Slurm

Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

Change to the directory where your ORCA input files
are stored.
PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
cd /work/myusername/orca/task123

Input file for ORCA simulation
PLEASE CHANGE orca.inp TO THE ACTUAL INPUT FILE NAME!
INPUT_FILE=orca.inp

ORCA version to use. See 'module avail orca' for available
versions
module load orca/4.2.1-shared

start your ORCA calculation; ORCA's own (parallel) launcher
will take all needed information from the scheduler environment

72We are investigating options to have Slurm automatically create an on-demand file system that
transparently combines the /scratch file spaces of several compute nodes into a single one. The
advantage of such a solution is clear; any drawbacks, side effects as well as the costs (license fees
etc.) of such a solution remain to be clarified.

LiDO3 | First Contact page 153 of 216

IT & Medien Centrum | LiDO3 | First Contact

orca ${INPUT_FILE}

Listing 4.17: Contents of file ’run_orca_multiple_nodes_through_slurm.sh’
A copy is available from path /cluster/sfw/lido3-examples/orca/
run_orca.for_multiple_compute_nodes.sh

4.5.11 Common software example: Python
A user can install additional Python packages and store them in his home directory,
preferably though – for better performance – in the parallel file system under /work
(also accessible via the environment variable $WORK). Section 4.3.6.2 explains the
procedure.
Depending on whether you installed Python packages via conda, you may need to
include the statement

conda activate
↪ <name_of_a_particular_conda_env_you_created_previously>

in either your startup file for all shells, ${HOME}/.bashrc, or include the statement
in every Slurm job script. The latter approach is recommended as it makes reproducing
- for you and anyone trying to trace your steps at a later time - the results of a particular
Slurm job easier: all dependencies are in one place and not scattered over several files
(the file ${HOME}/.bashrc, the environment variables that were set when you
submitted the Slurm job and the Slurm job script itself).

4.5.11.1 On a single compute node

The following script, when invoked via

sbatch StartPythonBatchJobViaSLURM.sh

asks for 1 compute node with 4 cores for 90 minutes and 15 seconds:

#!/bin/bash -l
#SBATCH --job-name=PythonAnalysis
run at most for 0 days, 1 hour, 30 minutes and 15 seconds
#SBATCH --time=0-01:30:15
#SBATCH --partition=short
ask for a single compute core on one compute node
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=4

LiDO3 | First Contact page 154 of 216

IT & Medien Centrum | LiDO3 | First Contact

memory requirement for the entire job in megabytes
#SBATCH --mem=6000
PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
#SBATCH --output=/work/myusername/tmp/slurm_job
#SBATCH --error=/work/myusername/tmp/slurm_job
send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL
PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

Change directory to where my Python input files are stored
PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
cd /work/myusername/tmp

Load the required environment modules to use Python
(note that several Python versions are available, not just
3.11.7 as in this example, see output of the command
'module avail python/' in an interactive shell to list them.)
module purge
module load python/3.11.7-gcc114-base

Run the Python script
srun python3 my_script.py

Listing 4.18: Contents of file ’StartPythonBatchJobViaSLURM.sh

4.5.11.2 On multiple compute nodes

As of yet, there is no in-built support in Python for parallelising scripts over the compute
nodes of a cluster, e.g. distributed parallel programming. In order to have a Slurm
job script run Python processes on multiple compute nodes, you need to look into
third-party Python modules like, for instance, MPI4Py.
If you think we are wrong on this, feel free to correct us.

4.5.11.3 Multithreading

Python tutorials traditionally tell you to use multiprocessing.cpu_count()
to determine the number of compute cores and then to use this number to start
as many threads. These tutorials, however, assume you have exclusive access to all
CPU resources on a given system. This is not necessarily the case when you work on a
compute cluster: Cluster job scheduling systems such as SLURM may limit the number
of cores available to your Python job – as opposed to the number of physically installed
cores in a compute node. If you only requested a subset of the physical cores available

LiDO3 | First Contact page 155 of 216

IT & Medien Centrum | LiDO3 | First Contact

on a compute node (see column ’max. cores’ in table 4.4 on page 102) and you use
multiprocessing.cpu_count() to determine how many threads to start, your
script might try to use way more cores than your Slurm job has available. This may lead
to overload and timeouts. Example: say you submit 16 Slurm jobs, each requesting
4 cores, and request it to be run in any of the partitions short, ext_vwl_norm,
ext_iom_norm, ext_chem_norm, ext_chem2_norm, ext_math_norm. 4
of these Slurm jobs could get scheduled to compute nodes with 20 physical cores; if
each Slurm job starts 20 instead of 4 threads, the compute node will be overloaded
4 times. All 16 of these Slurm jobs could get scheduled to compute nodes with 64
physical cores; if each Slurm job starts 64 threads, the compute node will be overloaded
16 times.
So, do not rely on multiprocessing.cpu_count(), but instead on something
like the function available_cpu_count from listing 4.19 to reliably determine
the number of available cores:

#!/usr/bin/env python3
#
Cluster job scheduling systems such as SLURM, Platform
LSF, Altair PBS Professional may limit the number of cores
available to your Python job - as opposed to the number
of physically installed cores in a compute node.
#
If you use multiprocessing.cpu_count() to determine how
many threads to start, your script might try to use way
more cores than it has available, which may lead to
overload and timeouts.

Solution based on https://stackoverflow.com/a/55423170
import os

def available_cpu_count():
""" Number of *available* virtual or physical CPUs

on this system """

Tested with Python 3.3 - 3.13 on Linux
try:

res = len(os.sched_getaffinity(0))

if res > 0:
return res

except (KeyError, ValueError):
pass

LiDO3 | First Contact page 156 of 216

IT & Medien Centrum | LiDO3 | First Contact

Works with Python 2.x and 3.x on Linux,
relies on SLURM environment variable
try:

res = int(os.environ['SLURM_CPUS_PER_TASK'])

if res > 0:
return res

except (KeyError, ValueError):
pass

Works with Python 3.13
try:

res = os.process_cpu_count()

if res:
return res

except (KeyError, ValueError):
pass

raise Exception('Can not determine number of CPUs on this
↪ system')

if __name__ == "__main__":
print("#Cores: ", available_cpu_count())

Listing 4.19: Determine number of available cores to Python code

4.5.12 Common software example: R
4.5.12.1 Using own R packages

A user can build additional R packages and store them in his home directory, prefer-
ably though – for better performance – in the parallel file system under /work (also
accessible via the environment variable ${WORK}). That is the preferred way over
having to install them systemwide: When users install their R packages individually,
conflict situations are avoided where user A needs a set of R packages in a certain
version and user B needing them in older or newer versions. Installing them to a user’s
home directory – or to some location below ${WORK} – allows the user to quickly
check whether up- or downgrading R packages resolves issues he is having with them.
Given that the home directory is writable only on both gateway servers, a user should

LiDO3 | First Contact page 157 of 216

IT & Medien Centrum | LiDO3 | First Contact

◾ either only build R packages on the gateway servers, not the compute nodes, if
the resulting libraries should be written to the home directory:

module load R/4.2.1-gcc122-base
R CMD INSTALL --library=~/R/4.2.1
↪ --configure-args=--with-mpi=${OMPI_HOME}
↪ /path/to/Rpackage.tar.gz

or
◾ compile on gateway servers or compute nodes while pointing the R library path

to somewhere below ${WORK}

module load R/4.2.1-gcc122-base
R CMD INSTALL --library=${WORK}/R/4.2.1
↪ --configure-args=--with-mpi=${OMPI_HOME}
↪ /path/to/Rpackage.tar.gz

The latter approach has proven to work best and is hence recommended.

The problem with the former approach is as follows: Experience has shown
that there exists a race condition on LiDO3 when several Slurm job scripts of the
very same user are started simultaneously and all try to access R packages from a
user’s home directory. While R in some of these Slurm jobs will successfully locate
an R package named foo additionally installed under /home/<user>/R/4.2.1,
R might also bail out with

Error in loadNamespace(x) : there is no package called 'foo'

Reason behind seems a timing issue related to the fact that the servers providing the
user’s home directory are less performant than those BeeGFS servers providing the
parallel file system under /work.
When installing, though, additional R packages in a non-standard path like
/work/<user>/R/4.2.1, R needs a helping hand to locate them: Either set the
environment variable R_LIBS to the location where the additional R packages got
installed

LiDO3 | First Contact page 158 of 216

IT & Medien Centrum | LiDO3 | First Contact

export R_LIBS=${WORK}/R/4.2.1

Add this line to either every Slurm job script or to the file ${HOME}/.bashrc in
order to set this permanently.
Or create a file named .Rprofile in your home directory, ${HOME} with the fol-
lowing content73

.libPaths("/work/<user>/R/4.2.1")

and, subsequently, create said directory as well:

$ mkdir -p /work/<user>/R/4.2.1

Do not forget to supply this path when compiling and installing R packages (see next
section).
Of couse, if the R packages got installed into a different path like
/work/<user>/R/x86_64-pc-linux-gnu-library/4.1 adapt the paths
in the above listings accordingly. (See section 4.5.12.3 for a smarter solution that allows
to switch quickly between different R versions along with their according additional
privately installed R packages.)
Use the follower one-liner to check from the command line whether the paths were set
correctly such that R successfully locates the additional R packages:

Rscript -e 'ip = as.data.frame(installed.packages()[,c(1,3:4)]);
↪ ip = ip[is.na(ip$Priority),1:2,drop=FALSE]; ip;'

4.5.12.2 Installing own R packages

In this section, we assume you set up R to find additional R package in ${WORK}/R/4.2.1.
If you are using a different path, make sure to replace ${WORK}/R/4.2.1 in the
following examples appropriately.

73See also an improved version in section 4.5.12.3 that supports switching between multiple R
versions.

LiDO3 | First Contact page 159 of 216

IT & Medien Centrum | LiDO3 | First Contact

Most R packages are under constant and heavy development. If you want to down-
load the most recent version from CRAN, compile and install it – including all its
dependencies and, in turn, their dependencies – the easiest way known to us so far
is:

module load R/4.2.1-gcc122-base
R -e "install.packages('package',
↪ repos='http://cran.us.r-project.org',
↪ lib='${WORK}/R/4.2.1', type='source')"

If you want to compile an older version of a specific R package or the R package in
question requires some additional configure arguments, download the tarball manually
and install it like this

module load R/4.2.1-gcc122-base
R CMD INSTALL --library=${WORK}/R/4.2.1
↪ --configure-args=--with-mpi=${OMPI_HOME}
↪ /path/to/Rpackage.tar.gz

The drawback for this approach is that any dependency Rpackage.tar.gz might
require is not automatically downloaded, compiled and installed. The procedure to
compile all dependencies can become rather tedious. But it can be semi-automated:
The following convenience script facilitates downloading R packages, especially if you
need to install more than one:

#!/bin/bash -l

extra=""
if test -z "$@"; then

extra="-O index.html"
fi
file=$(grep ">$1_" index.html | awk -F'>' '{ print $7 }' | sed

↪ 's|</a||' | tail -n 1)
wget http://cran.r-project.org/src/contrib/$file $extra

Listing 4.20: Contents of file ’load_r_package’

Copy this content to a new file named load_r_package and set the executable bit
for the script via

chmod 755 load_r_package

LiDO3 | First Contact page 160 of 216

IT & Medien Centrum | LiDO3 | First Contact

When invoked without arguments, the script downloads the index of the directory
https://cran.r-project.org/src/contrib/ and stores it as index.html
in the local directory:

rm -f index.html*
./load_r_package

When invoked with an argument, the script queries the cache file index.html in
the local directory for that given argument string and tries to download the tarball if
a R package is found that matches this string. Example:

./load_r_package digest

will download the most recent version of the R package digest, at the time of writing
digest_0.6.33.tar.gz.
Once this script is made available, we can use it to automatically download and then
compile and install an R package via

module purge
module load R/<version of your liking>

package=digest
./load_r_package ${package} && R CMD INSTALL
↪ --configure-args=--with-mpi=${OMPI_HOME}
↪ ${package}_*.tar.gz || (echo "ERROR"; read junk)

Wrap this in a Bash shell loop to install an entire series of R packages (in the correct
order of the respective dependencies):

module purge
module load R/<version of your liking>

for package in <list of desired R packages>; do ./load_r_package
↪ ${package} && R CMD INSTALL
↪ --configure-args=--with-mpi=${OMPI_HOME}
↪ ${package}_*.tar.gz || (echo "ERROR"; read junk); done

LiDO3 | First Contact page 161 of 216

IT & Medien Centrum | LiDO3 | First Contact

Make sure to replace the strings <version of your liking> and <list
↪ of desired packages> in the instructions above appropriately. In case the
R package(s) you want to install have unfulfilled dependencies, the R install command
will fail, reporting the name of the missing dependency:

for package in spdep ; do ./load_r_package ${package} && R CMD
↪ INSTALL --configure-args=--with-mpi=${OMPI_HOME}
↪ ${package}_*.tar.gz || (echo "ERROR. Press any key to
↪ continue"; read junk); done

--2020-04-11 15:21:32--
↪ http://cran.r-project.org/src/contrib/sp_1.4-1.tar.gz

Resolving cran.r-project.org (cran.r-project.org)... 137.208.57.37
Connecting to cran.r-project.org
↪ (cran.r-project.org)|137.208.57.37|:80... connected.

HTTP request sent, awaiting response... 200 OK
Length: 1698902 (1.6M) [application/x-gzip]
Saving to: 'sp_1.4-1.tar.gz'

100%[==============================>] 1,698,902 --.-K/s in
↪ 0.1s

2020-04-11 15:21:32 (12.7 MB/s) - 'sp_1.4-1.tar.gz' saved
↪ [1132945/1132945]

ERROR: dependencies 'sp', 'spData', 'sf', 'deldir', 'LearnBayes',
↪ 'coda', 'expm', 'gmodels' are not available for package
↪ 'spdep'

* removing
↪ '/home/myusername/R/x86_64-pc-linux-gnu-library/3.6.1/rgdal'

ERROR. Press any key to continue

In this particular example, where one wanted to install the R package spdep, we
needed to first compile and install sp and then a lot of others which had dependen-
cies of their own. Prepend iteratively all the missing R packages to <list of
↪ desired packages> in ascending order of dependency and start over until the
compilations succeeds. This approach easily requires a dozen or so iterations, depend-
ing on the particular R package a user wants to use. For this example, the complete
instruction would look like:

for package in sp raster spData e1071 classInt DBI units sf
↪ deldir LearnBayes coda expm gmodels spdep ; do ./load_r_mod
↪ ${package} && R CMD INSTALL
↪ --configure-args=--with-mpi=${OMPI_HOME}
↪ ${package}_*.tar.gz || (echo "ERROR"; read junk); done

LiDO3 | First Contact page 162 of 216

IT & Medien Centrum | LiDO3 | First Contact

It may turn out, however, that an R package as external system library dependencies.
It typically requires a lot of work to compile them as a user in such a way that R will
find them both when the R package gets compiled and used later on in simulations.
So, if you are faced with a situation that a R package requires some system software,
please inform the LiDO team what system software is required. (Better yet, tell the
LiDO team additionally what R package you are trying to compile. It might be that
more libraries than the one initially reported as missing will need to be installed.)

4.5.12.2.1 Tweaking compiler optimisation flags

Most R packages that invoke C or C++ code compile these source files with generic
optimisation flags: -O2 -g74 and use the GNU Compiler Collection (gcc, g++) to
compile the code. If your R simulations run for a large amount of time, you may
want to experiment with whether you can decrease the run time of your simulation by
tweaking the optimisation flags the GNU compilers uses. But do check that a more
aggressive optimisation still yields correct R simulation results. To instruct the GNU
C and C++ compiler to use even more optimisations during source code compilation
and additionally choose those that it sees fit for the CPU architecture auto-detected
at build time, invoke:

mkdir ~/.R
cat > ~/.R/Makevars <<EOF
CFLAGS += -O3 -Wall -mtune=native -march=native
CXXFLAGS += -O3 -Wall -mtune=native -march=native
EOF

This creates the directory ~/.R and the file ~/.R/Makevars. The latter will con-
tain two lines with additional compiler flags, namely CFLAGS and CXXFLAGS. If
you change these settings, you need to re-compile your R packages and assess the
results: compare both time-to-solution of your R scripts as well as the simulation re-
sults! More aggressive optimisation sometimes leads to wrong simulation results, do
to accumulation of small numerical artifacts that accompany more aggressive source
code optimisations.

74See the GCC man page, man gcc, for documentation on the code optimisations being applied
with -O2 and what other optimisation flags are available.

LiDO3 | First Contact page 163 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.5.12.3 Using multiple versions of R along with self-compiled R packages

When building additional R packages yourself, please be aware that R requires that all
R packages are built by the very same R version and that this R version is the one you
invoke! Given that on LiDO3 multiple R versions are available, it might happen that you
compiled an additional R package with R/3.6.3-gcc93-base, but tried to invoke
R after loading the modulefile R/4.0.0-gcc93-base or R/4.1.2-gcc93-base
some time later. Or vice versa. In these cases where conflicting R versions are involved,
R will bail out.
To avoid this, use a slightly more complicated ~/.Rprofile than the default one.
Instead of

.libPaths("/work/<user>/R")

Listing 4.21: Default contents of file ’.Rprofile’, problematic when using multiple
R versions

use75

Source: https://stackoverflow.com/a/54555489

Set version specific local libraries
get current R version (in semantic format)
version <- paste0(R.Version()$major, ".", R.Version()$minor)
get username on Unix
(note: use USERNAME under Microsoft Windows)
uname <- Sys.getenv("USER")
generate R library path for parent directory
libPath <- paste0("/work/", uname, "/R/")

setLibs <- function(libPath, ver) {
combine parent and version for full path
libfull <- paste0(libPath, ver)
create a new directory for this R version
if it does not exist
if (!dir.exists(libPath)) {

dir.create(libPath)
}
if (!dir.exists(libfull)) {

Warn user (the necessity of creating
a new library may indicate an inadvertant
choice of the wrong R version)

75The following is based on the solution presented in this web discussion.76

LiDO3 | First Contact page 164 of 216

https://stackoverflow.com/questions/54555488/setting-default-libpaths-for-multiple-versions-of-r/54555489#54555489

IT & Medien Centrum | LiDO3 | First Contact

warning(paste0("Library for R version '", ver, "' does
↪ not exist; it will be created at: ", libfull))

dir.create(libfull)
}
.libPaths(c(libfull, .libPaths()))

}

setLibs(libPath, version)

Listing 4.22: Contents of file ’.Rprofile’, compatible with using multiple R versions.
A copy is available from path /cluster/sfw/lido3-examples/R/
.Rprofile

Note that you need to compile additional R packages for every R version you intend
to use. Because libPath in ~/.Rprofile points to /work/<user>/R/<R
↪ version>/, the compiled R libraries will end up in subdirectories of this custom
R library path, not in a subdirectory of the home directory.

4.5.12.4 Example Slurm job script for R

The following script, when invoked via

sbatch StartRBatchJobViaSLURM.sh

asks for 1 compute node with 1 cores for 90 minutes and 15 seconds:

#!/bin/bash -l
#SBATCH --job-name=Ranalysis
run at most for 0 days, 1 hour, 30 minutes and 15 seconds
#SBATCH --time=0-01:30:15
#SBATCH --partition=short
ask for a single compute core on one compute node
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=1
memory requirement per CPU in megabytes
#SBATCH --mem-per-cpu=1536
PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
#SBATCH --output=/work/myusername/tmp/slurm_job
#SBATCH --error=/work/myusername/tmp/slurm_job
send mail when for certain job events
Possible values: NONE, BEGIN, END, FAIL, REQUEUE, ALL
#SBATCH --mail-type=ALL

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de

LiDO3 | First Contact page 165 of 216

IT & Medien Centrum | LiDO3 | First Contact

Change directory to where my R input files are stored
PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
cd /work/myusername/tmp

Load the required environment modules to use R
(note that several R versions are available, not just
4.2.1 as in this example, see output of the command
'module avail R/' in an interactive shell to list them.)
module purge
module load R/4.2.1-gcc122-base

Uncomment the following block if you want to make
known to R your own R packages installed (installed
in ${WORK}/R/4.2.1) *and* you do *not* want to use
the file ~/.Rprofile (see next section).
export R_LIBS=/work/myusername/R/4.2.1

Run the R analysis, use an external script
for the R instructions
srun Rscript my_script.R

4.5.13 Common software example: TOPAS Tool for Particle
Simulation

4.5.13.1 Running a single TOPAS simulation

The TOPAS77 software is not available via environment modulefile (see 4.3.5). In
order to use the software, a user needs to register with TOPAS MC Inc., download
the software pre-compiled for CentOS 7 from their site, typically as a tarball, e.g.
topas_3_9_centos7.tar.gz and extract it to his $HOME or $WORK directory:

$ cd $WORK
$ tar xvzf topas_3_9_centos7.tar.gz

You are possibly going to need to download and extract the Geant4 headers, i.e. the
archive Geant4Headers_1121p1.zip, too, if you intend to build an application
that uses the Geant4 toolkit.

77https://sites.google.com/a/topasmc.org/home/code-repository-
authorized-users-only

LiDO3 | First Contact page 166 of 216

https://sites.google.com/a/topasmc.org/home/code-repository-authorized-users-only
https://sites.google.com/a/topasmc.org/home/code-repository-authorized-users-only
https://sites.google.com/a/topasmc.org/home/code-repository-authorized-users-only

IT & Medien Centrum | LiDO3 | First Contact

In order to use TOPAS, you are definitely going to need to download some Geant4
datasets78, e.g.

$ cd $WORK
$ test -d G4Data || mkdir G4Data
$ cd G4Data
$ wget https://cern.ch/geant4-data/datasets/G4NDL.4.7.tar.gz
$ tar xzf G4NDL.4.7.tar.gz
$ wget https://cern.ch/geant4-data/datasets/G4INCL.1.2.tar.gz
$ tar xzf G4INCL.1.2.tar.gz
...

In order to run TOPAS Monte Carlo simulations using Slurm on LiDO3, a job script
as in listing 4.23 theoretically suffices

#!/bin/bash -l
#SBATCH --partition=med
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=20
#SBATCH --time=0-03:00:00

memory requirement for all CPUs in megabytes
#SBATCH --mem=6144
#SBATCH --job-name=TOPAS_simulation

PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
#SBATCH --output=/work/myusername/slurm_job%A
#SBATCH --error=/work/myusername/slurm_job%A

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de
#SBATCH --mail-type=TIME_LIMIT

export TOPAS_G4_DATA_DIR=${WORK}/G4Data
cd /path/to/your/main/topas-input-file
${WORK}/topas/bin/topas ${TOPAS_INPUT_FILE}

Listing 4.23: Contents of simple Slurm job script to run TOPAS
(this template is not recommended due to unnecessarily long runtimes!)

The problem with this simple approach is twofold: on the one hand, the prebuild
binary Jonatahn Perl from the TOPAS developer group precompiles for CentOS7 is
not optimised for the hardware of LiDO3 compute nodes. The LiDO3 team provides

78https://geant4.web.cern.ch/download/

LiDO3 | First Contact page 167 of 216

https://geant4.web.cern.ch/download/
https://geant4.web.cern.ch/download/
https://geant4.web.cern.ch/download/

IT & Medien Centrum | LiDO3 | First Contact

two TOPAS binaries optimised for compute nodes of type cstd01-*, cstd02-*,
cquad01-* and cquad02-*; they merely differ in the amount of additional aggres-
sive compiler optimisation flags. The two binaries are

/cluster/sfw/topas/3.9/hw-opt
/cluster/sfw/topas/3.9/aggressive-opt

On the other hard there is the I/O pattern of TOPAS: It queries thousands of files from
the extracted Geant4 datasets. On average, a running TOPAS simulations implicitly
queries the parallel file system every 2 microseconds about the metadata of a Geant4
dataset file. To access its content, but also to verify it has changed and needs to
be re-read. When several dozen or even hundreds of TOPAS simulations are being
run, a lot of network I/O happens in the background to access Geant4 dataset files.
A parallel file system, though, is optimised for throughput, ideally reading from and
writing to a handful of large files. That is not what happens with Geant4 dataset
files: A typical TOPAS user downloads all 12 Geant datatasets79 and will use them
in his Monte Carlo simulations. Extracting the tarballs yields over 45,000 small files.
Accessing them, regardless whether they are stored in a user’s home directory (provided
by NFS) or in the parallel file system (provided by BeeGFS), over the network one by
one yields a bad performance. The simplest way to observe and verify the performance
penalty yourself is probably the following experiment: unpacking all 12 Geant4 dataset
tarballs and copying these 45,000+ files from $WORK to the local hard disk drive (see
section 4.3.2.4) of a LiDO3 compute node as part of a Slurm job takes approximately 17
minutes. Copying instead the 12 Geant4 database tarballs (not the extracted files) from
$WORK to a local hard disk drive and extracting the 45,000+ files from these tarballs
onto the local hard disk drive finishes within less than 45 seconds. When not merely
one Slurm job performs this experiment, but, e.g., 20 Slurm jobs, the ratio gets worse:
45 minutes for the former approach versus still 45 seconds for the latter approach.
In other words, having several dozen or more processes access the 45,000+ Geant4
database files over the network – whether this access be as part of running TOPAS
simulations or by simple copy instructions – poses a several performance bottleneck.
An obvious runtime optimisation for TOPAS Slurm jobs is to have the Slurm job script
transfer all tarballs from whereever you chose to store them to the local hard disk drive
of the compute node Slurm assigned to your job and have the Slurm job script extract
these tarballs there:

Customise these three environment variables
TOPAS_G4_DATA_DIR=/work/myusername/G4Data

79https://geant4.web.cern.ch/download/

LiDO3 | First Contact page 168 of 216

https://geant4.web.cern.ch/download/
https://geant4.web.cern.ch/download/

IT & Medien Centrum | LiDO3 | First Contact

LOCAL_BASE_DIRECTORY=/scratch/${USER}/${SLURM_JOBID}
LOCAL_TOPAS_G4_DATA_DIR=${LOCAL_BASE_DIRECTORY}/G4Data

Generic instructions from here onwards
Extract Geant4 dataset tarballs to local disk
mkdir -p ${LOCAL_TOPAS_G4_DATA_DIR}
for file in ${TOPAS_G4_DATA_DIR}/*.tar.gz; do

tar -x${TAR_FLAG}zf ${file} -C ${LOCAL_TOPAS_G4_DATA_DIR}
done

and adjust the environment variable TOPAS uses to locate the Geant4 database files

export TOPAS_G4_DATA_DIR=${LOCAL_TOPAS_G4_DATA_DIR}

While at it, additional, though small, TOPAS runtime gains can be achieved by three
additional steps:

1. Copy the TOPAS input file and any files it (recursively) may include and may
repeatedly read from (think: phase space files).

2. Pin the TOPAS threads to the compute cores the Slurm job got assigned. See
https://youtu.be/PSJKNQaqwB080 for an introduction to LIKWID, the open
source software we used for pinning.

3. On a ccNUMA architecture, the default memory placement is a ’first touch
policy placement’. A better, though not optimal strategy is to place memory
round-robin across all compute cores. See this PDF document81 for an in-depth
explanation of all this.

4. Automatically adjust the main TOPAS input file to make sure that only as many
TOPAS threads are started as got requested by the Slurm option --cpus-per-task.

Add an automatic cleanup procedure to the mix that ensures that the files the Slurm
job script copied to the local hard disk drives get wiped whenever the Slurm jobs ends
or aborts and you end up with the more complex Slurm job script in listing 4.24. It
has a header section where you specify where you installed TOPAS and the Geant4
database tarballs to as well as the location of the TOPAS input file. The com-
plex lower part of the Slurm job script aims to be generic and typically does not

80thisvideo
81https://moodle.nhr.fau.de/pluginfile.php/5823/mod_resource/

content/2/04_ccNUMA.pdf

LiDO3 | First Contact page 169 of 216

https://moodle.nhr.fau.de/pluginfile.php/5823/mod_resource/content/2/04_ccNUMA.pdf
this video
https://moodle.nhr.fau.de/pluginfile.php/5823/mod_resource/content/2/04_ccNUMA.pdf
https://moodle.nhr.fau.de/pluginfile.php/5823/mod_resource/content/2/04_ccNUMA.pdf

IT & Medien Centrum | LiDO3 | First Contact

need to be touched (nor understood in all detail). A copy of the Slurm job tem-
plate to run TOPAS as shown in listing 4.24 is available on LiDO3 from the path
/cluster/sfw/lido3-examples/ topas/slurmjob-single-simulation.sh.

#!/bin/bash -l
#SBATCH --partition=med
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=20
#SBATCH --time=0-03:00:00

memory requirement for all CPUs in megabytes
#SBATCH --mem=6144
#SBATCH --job-name=TOPAS_simulation

PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
#SBATCH --output=/work/myusername/slurm_job%A
#SBATCH --error=/work/myusername/slurm_job%A

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de
#SBATCH --mail-type=TIME_LIMIT

When a job is within 120 seconds of its end time,
send it the signal SIGQUIT.
Note 1: due to the resolution of event handling
by Slurm, the signal may be sent up to 60
seconds earlier than specified.
Note 2: only *one* signal can be defined. Later
Slurm signal definition override earlier
definitions.
#SBATCH --signal=B:SIGQUIT@120

Start customisation section
(Note: no whitespace allowed in directory or file names!)

Location of unpacked TOPAS binary
#
Variant 1:
Official CentOS 7 TOPAS binary, provided by Jonathan Perl
↪ himself,

downloaded from https://www.topasmc.org/download.
Advantage : tested & validated
Disadvantage: not optimised for LiDO3 hardware, runs slower
TOPAS_BASE_DIRECTORY=/work/${USER}/topas
#
Variant 2:
Binary compiled from source by LiDO team using compiler

LiDO3 | First Contact page 170 of 216

IT & Medien Centrum | LiDO3 | First Contact

optimisation flags for compute nodes cstd0[12]-* and
cquad0[12]-*
Advantage : untested & not yet validated
Disadvantage: runs faster than prebuild binaries from variant 1
###TOPAS_BASE_DIRECTORY=/cluster/sfw/topas/3.9/hw-opt
#
Variant 3:
Binary compiled from source by LiDO team using even more
aggressive compiler optimisation flags suitable for compute
nodes cstd0[12]-* and cquad0[12]-*
Advantage : untested & not yet validated
Disadvantage: runs faster than prebuild binaries from variant 1
###TOPAS_BASE_DIRECTORY=/cluster/sfw/topas/3.9/aggressive-opt

TOPAS_INPUT_FILES_DIRECTORY=/work/${USER}/analysis
TOPAS_INPUT_FILE=input.txt
TOPAS_G4_DATA_DIR=/work/${USER}/G4Data

LOCAL_BASE_DIRECTORY=/scratch/${USER}/${SLURM_JOBID}
LOCAL_TOPAS_INPUT_FILES_DIRECTORY=${LOCAL_BASE_DIRECTORY}/input
LOCAL_TOPAS_G4_DATA_DIR=${LOCAL_BASE_DIRECTORY}/G4Data

Be verbose about the files that are transferred to the local
hard disk drive of a compute node. Makes debugging easier.
#VERBOSE_FILE_TRANSFER=yes
VERBOSE_FILE_TRANSFER=no
End customisation section

Beyond this point, there should be no need to change the
generic instructions.
COPY_FLAG=""
TAR_FLAG=""
if ["${VERBOSE_FILE_TRANSFER}" == "y" -o

"${VERBOSE_FILE_TRANSFER}" == "yes"]; then
COPY_FLAG="v"
TAR_FLAG="v"

fi

##
To avoid that unnecessary file I/O over the network (whether
it be to the home directory $HOME or the parallel file
system $WORK) copy the TOPAS application, its input files
and the Géant4 data TOPAS operates on to the local hard disk
of the assigned compute node. To a temporary location.
(Note: it probably suffices to just copy the Géant4 data.)

LiDO3 | First Contact page 171 of 216

IT & Medien Centrum | LiDO3 | First Contact

printf "%s Start copying files to local hard disk drive on
↪ %s\n\n" "$(date)" "$(hostname -s)"

Extract Geant4 dataset tarballs to local disk
if [-d "${TOPAS_G4_DATA_DIR}"]; then

mkdir -p ${LOCAL_TOPAS_G4_DATA_DIR}
for file in ${TOPAS_G4_DATA_DIR}/*.tar.gz; do

tar -x${TAR_FLAG}zf ${file} -C ${LOCAL_TOPAS_G4_DATA_DIR}
done
20-200 times slower alternative: copy thousands of files
extracted from the tarball to the local disk
cp -aL${COPY_FLAG} ${TOPAS_G4_DATA_DIR}/*
↪ ${LOCAL_TOPAS_G4_DATA_DIR}

else
if [-z "${TOPAS_G4_DATA_DIR}"]; then

echo "Variable TOPAS_G4_DATA_DIR in Slurm job script is
↪ empty. Aborted." 1>&2

exit 1;
elif [! -d "${TOPAS_G4_DATA_DIR}"]; then

echo "Directory <$TOPAS_G4_DATA_DIR>, configured via
↪ variable TOPAS_G4_DATA_DIR in Slurm job script, does not
↪ exist. Aborted." 1>&2

exit 2;
fi

fi

if [-e ${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}]; then
mkdir -p ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}
cp -aL${COPY_FLAG}
↪ ${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}
↪ ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}

else
if [-z "${TOPAS_INPUT_FILES_DIRECTORY}"]; then

echo "Variable TOPAS_INPUT_FILES_DIRECTORY in Slurm job
↪ script is empty. Aborted." 1>&2

exit 3;
elif [! -d "${TOPAS_INPUT_FILES_DIRECTORY}"]; then

echo "Directory <$TOPAS_INPUT_FILES_DIRECTORY>,
↪ configured via variable TOPAS_INPUT_FILES_DIRECTORY in
↪ Slurm job script, does not exist. Aborted." 1>&2

exit 4;
fi
if [-z "${TOPAS_INPUT_FILE}"]; then

echo "Variable TOPAS_INPUT_FILE in Slurm job script is
↪ empty. Aborted." 1>&2

exit 5;

LiDO3 | First Contact page 172 of 216

IT & Medien Centrum | LiDO3 | First Contact

elif [! -e
↪ "${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}"]; then

echo "TOPAS input file
↪ <${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}>,
↪ configured via variables TOPAS_INPUT_FILES_DIRECTORY and
↪ TOPAS_INPUT_FILE in Slurm job script, does not exist.
↪ Aborted." 1>&2

exit 6;
fi

fi

Copy input files
Variant 1: Selectively copy all input files referenced in

↪ ${TOPAS_INPUT_FILE}
and all files it (recursively) includes via 'includeFile ='
↪ statements.

Copy also all files and directories referred to in input files
↪ using

the keywords '*InputFile' and '*DicomDirectory'. If you need
↪ to extend

this keyword list and do not know how, contact the LiDO team
↪ for help.

Preserve any directory substructure information.
cnt=1;
maxRecursion=10;
filesToParse=${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE};
inputFilesAndDirs=""
while test -n "${filesToParse}" -a ${cnt} -le ${maxRecursion}; do

cnt=$((cnt + 1));
for file in ${filesToParse}; do

if [-f "${file}" -o \(-L "${file}" -a -f "$(readlink
↪ --canonicalize "${file}")" \)]; then

dirname=$(dirname ${file});
inputFilesAndDirs="${inputFilesAndDirs} ${file}";
Add the included file(s) to the list of files still
to parse. (Only parse files with less than, say,
500 kB. To avoid searching phase space files of
several megabytes (or even larger).)
if [$(stat --format="%s" "${file}") -lt 512000];

↪ then
Some files or directories are explicitly named
filesToParse=$(echo ${filesToParse}; sed -n -E

↪ 's/#.*$//;
↪ s/(includeFile|^.*InputFile|^.*DicomDirectory)[[:space:]]*=//p;'
↪ ${file} | tr -d ' \r' | xargs --no-run-if-empty -n 1 | sed
↪ -e "s|^|${dirname}/|");

For other files only their basename is
specified, e.g.

LiDO3 | First Contact page 173 of 216

IT & Medien Centrum | LiDO3 | First Contact

s:So/PhasespacesourcePMMA/PhaseSpaceFileName
↪ = "a"

will cause TOPAS to look for both "a.header"
and "a.phsp". Add both files to list.
filesToParse=$(echo ${filesToParse}; sed -n -E

↪ 's/#.*$//; s/^.*PhaseSpaceFileName[[:space:]]*=//p;'
↪ ${file} | tr -d ' \r' | xargs --no-run-if-empty -n 1 | sed
↪ -E 's/^(.*)$/\1.header\n\1.phsp/' | sed -e
↪ "s|^|${dirname}/|");

else
echo "Warning: Skipped parsing large file

↪ <${file}> for include keywords" 1>&2
fi

elif [-d "${file}"]; then
inputFilesAndDirs="${inputFilesAndDirs} ${file}";

fi;
Remove just parsed file from list of files
still to parse
filesToParse=$(echo ${filesToParse} | sed -E

↪ "s|^${file}\b||;");
done;

done;
Remove ${TOPAS_INPUT_FILES_DIRECTORY} prefix from all files
to copy in order to avoid that this path prefix gets
re-created on the local hard disk drive as well.
inputFilesAndDirs=$(echo ${inputFilesAndDirs} | sed -e

↪ "s|${TOPAS_INPUT_FILES_DIRECTORY}/||g")
tar -C ${TOPAS_INPUT_FILES_DIRECTORY} -chf - ${inputFilesAndDirs}
↪ | tar -C ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}
↪ -x${TAR_FLAG}f -;

Variant 2: potentially very slow alternative to the complex
while-for-loop above: brute forcibly copy everything from
input directory to local HDD
cp -aL${COPY_FLAG} ${TOPAS_INPUT_FILES_DIRECTORY}/*
↪ ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}

printf "%s Finished copying files to local hard disk drive on
↪ %s\n\n" "$(date)" "$(hostname -s)"

##

##
In the case your job prematurely terminates (i.e. wall time
exceeded or you abort it via 'scancel'), temporary files
we copied to /scratch will be left in that directory.
This has led multiple times in the past to a situation where
the local /scratch directories filled up quicker than the

LiDO3 | First Contact page 174 of 216

IT & Medien Centrum | LiDO3 | First Contact

automatic cleanup script would remove the orphaned files.
##
To save off your data and clean up the /scratch when a job
aborts, a trap function can be used. It is called once the
login shell intercepts certain system signal (here: either
one of the signals USR1, SIGQUIT, SIGINT, SIGABRT, SIGKILL,
SIGHUP, SIGTERM, EXIT, TERM).
##
The 'SBATCH --signal=B:SIGQUIT@<time>' instruction we added
to the header of this scripts ensures that Slurm will send
an abort signal up to <time> seconds before the job reaches
the configured time limit. This signal is handled here, too.
finalize_job()
{

printf "%s Shell function finalize_job invoked\n\n" "$(date)"

Check whether copy destination directory is home directory.
If so, do not try to salved any data because the home
directory is read-only on the compute nodes. Hence, we can
not copy files to $HOME.
Test this by checking whether ${HOME} is a substring of the
variable ${TOPAS_INPUT_FILES_DIRECTORY}. How? By trying to
remove the substring and checking the resulting two strings.
if ["${TOPAS_INPUT_FILES_DIRECTORY##${HOME}}" !=
↪ "${TOPAS_INPUT_FILES_DIRECTORY}"]; then

printf "%s Can not copy any file TOPAS created locally
↪ back to ${TOPAS_INPUT_FILES_DIRECTORY}, because destination
↪ is read-only on %s\n\n" "$(hostname -s)"

else
cp -ru${COPY_FLAG} ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}/*

↪ ${TOPAS_INPUT_FILES_DIRECTORY}
fi
rm -rf ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}
↪ ${LOCAL_TOPAS_G4_DATA_DIR} ${LOCAL_BASE_DIRECTORY}

}
trap -- 'finalize_job' USR1 SIGINT SIGABRT SIGKILL \

SIGHUP SIGTERM EXIT TERM

time_limit()
{

printf "\n\n### TIME LIMIT
↪ ######################################\n";

printf "%s\nSlurm send us signal SIGQUIT:\n";
printf "This job is about to exceed its configure time";
printf "limit.\n Salvaging generated data from /scratch to";
printf "persistent\nstorage.\n" "$(date)"
printf
↪ "###\n\n";

LiDO3 | First Contact page 175 of 216

IT & Medien Centrum | LiDO3 | First Contact

finalize_job
}
trap -- 'time_limit' SIGQUIT
##

Switch to local copy of input files and start TOPAS
application
export TOPAS_G4_DATA_DIR=${LOCAL_TOPAS_G4_DATA_DIR}
cd ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}

Tweak input file such that TOPAS will use (at most) as many
↪ threads

as we requested from SLURM with this job script
sed -i -E
↪ "s|Ts/NumberOfThreads[[:space:]]*=.*\$|Ts/NumberOfThreads =
↪ ${SLURM_CPUS_PER_TASK}|"
↪ ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}

Dynamically determine the physical numbers of all cores
Slurm assigned to this Slurm job.
With a Slurm request that exclusively reserves an entire
compute node like
--cpus-per-task=20 --constraint=[cstd01|cstd02]
the answer is trivial: 0-19. For a Slurm job that asked
for an entire quad compute node using
--cpus-per-task=48 --constraint=[cquad01|cquad02]
the answer is trivial, too: 0-47.
But when asking less than 20 cores on a cstd01/cstd02 compute
node or less than 48 cores on a cquad01/cquad02 compute node,
we can not assume 0-<max number requested cpus per task>.

Unfortunately, the general case of a non-exclusively assigned
compute node make things complicated for the helper application
'likwid-pin'. Say the compute node has 20 physical cores,
physical numbers 0-19. You asked for 5. Slurm assigned your
job the physical cores 4, 5, 11, 12, 18. 'likwid-pin' (up to
version 5.3.0), sadly, detects that all physical cores and that
you only got a subset. In that case, it interprets any core
numbers as 'logical' numbers, i.e it numbers the physical cores
4, 5, 11, 12, 18 as 0, 1, 2, 3, 4. To pin the processes to the
assigned cores you cannot use
$ likwid-pin -c N:4,5,11,12,18 topas
as LIKWID implicitly converts this to
$ likwid-pin -c L:N:4,5,11,12,18 topas
but have to use
$ likwid-pin -c L:N:0,1,2,3,4 topas
or

LiDO3 | First Contact page 176 of 216

IT & Medien Centrum | LiDO3 | First Contact

$ likwid-pin -c L:N:0-4 topas
So, we need to determine those logical numbers of the fly.
ASSIGNED_CORES=$(cnt=0; numactl --show | sed -n -e
↪ '/^physcpubind: / { s/^physcpubind: //; p; }' | xargs -n 1
↪ | while read core; do echo $cnt; cnt=$((cnt + 1)); done |
↪ paste -sd,)

ASSIGNED_SOCKETS=$(numactl --show | sed -n -e '/^nodebind: / {
↪ s/nodebind: //; s/ /,/g; s/,$//; p; }')

Start TOPAS application, but:
* do pin the application to all those cores of a compute node
that Slurm assigned to this job, without touching the code
using 'likwid-pin' (see https://youtu.be/PSJKNQaqwB0)
* place memory round-robin across all assigned compute cores,
not an optimal strategy, but oftentimes it leads to better
runtimes than the default memory placement called
'first touch policy placement' (see https://moodle.nhr.fau.de/
pluginfile.php/5823/mod_resource/content/2/04_ccNUMA.pdf)
module load gcc/12.2.0 likwid/5.3.0 # for pinning
numactl --interleave=${ASSIGNED_SOCKETS} \

likwid-pin -c L:N:${ASSIGNED_CORES} \
${TOPAS_BASE_DIRECTORY}/bin/topas ${TOPAS_INPUT_FILE} &

wait

IMPORTANT: At the end of your job you will need to copy
everything back from scratch to your original
work directory. Otherwise, your results will get lost,
because you can not access the local file system that
easy and more - and contents in /scratch not belonging to
a running job any more get cleaned at regular intervalls
automatically.
Given that we already have a shell function that takes
care of this task when the Slurm job aborts, rely on it
for a TOPAS simulation that ran smootly, too.
printf "%s Start salvaging TOPAS output from local hard disk

↪ drive to persistent storage\n\n" "$(date)"
finalize_job
printf "%s Finished salvaging TOPAS output from local hard disk
↪ drive to persistent storage\n\n" "$(date)"

Optional: remove trap definition
trap - USR1 SIGQUIT SIGINT SIGABRT SIGKILL \

SIGHUP SIGTERM EXIT TERM

Listing 4.24: Contents of Slurm job script to efficiently run TOPAS
(this template is recommended for an isolated simulation)
A copy is available from path /cluster/sfw/lido3-examples/
topas/slurmjob-single-simulation.sh

LiDO3 | First Contact page 177 of 216

IT & Medien Centrum | LiDO3 | First Contact

Switching from the simple Slurm job script from listing 4.23 to 4.24, we have seen
runtime reductions in a range between 15 and 450 percent for TOPAS simulations
running between several minutes up to several days on LiDO3. So, using the complex
Slurm job script from listing 4.24 does pay off on LiDO3.

4.5.13.2 Running hundreds of TOPAS simulations

With Monte Carlo simulations, you typically do not run one simulation, but you run
hundreds of them. Most likely, you will organize them in some predictable way involving
an index variable, either in the directory name for the TOPAS input file or the TOPAS
input file name itself or both, e.g.

cd /work/myusername/analysis/1PA020_Angle001; topas input.txt
cd /work/myusername/analysis/1PA020_Angle002; topas input.txt
cd /work/myusername/analysis/1PA020_Angle003; topas input.txt
cd /work/myusername/analysis/1PA020_Angle004; topas input.txt

or

cd /work/myusername/analysis; topas 1PA020_Angle001.txt
cd /work/myusername/analysis; topas 1PA020_Angle002.txt
cd /work/myusername/analysis; topas 1PA020_Angle003.txt
cd /work/myusername/analysis; topas 1PA020_Angle004.txt

It would be a waste of time to write a Slurm job script for every single TOPAS
simulation. Even writing a script that creates these Slurm job scripts is unnecessary.
Instead write a single Slurm job script and use Slurm’s job array feature: add the line

#SBATCH --array=1-1000

to the top of listing 4.24, once submitted with

$ sbatch topasslurmjobscript.sh

Slurm will start 1,000 instances of this Slurm job script. These Slurm jobs differ only in
one respect: Slurm will automatically set the environment variable SLURM_ARRAY_TASK_ID,
differing between 1 and 1,000. This variable can be used to automatically select the
appropriate TOPAS input directory or input file:

LiDO3 | First Contact page 178 of 216

IT & Medien Centrum | LiDO3 | First Contact

TOPAS_INPUT_FILES_DIRECTORY=$(printf
↪ "/work/${USER}/analysis%04d" ${SLURM_ARRAY_TASK_ID})

will set ${TOPAS_INPUT_FILES_DIRECTORY} to

/work/${USER}/analysis0001
/work/${USER}/analysis0002
/work/${USER}/analysis0003
...
/work/${USER}/analysis1000

Similarly, you can define the TOPAS input file depending on the Slurm array index via
either one of the following instructions

TOPAS_INPUT_FILE=input${SLURM_ARRAY_TASK_ID}.txt
TOPAS_INPUT_FILE=$(printf "input%05d.txt" ${SLURM_ARRAY_TASK_ID})

such that the variable ${TOPAS_INPUT_FILE} will be set automatically to

input1.txt
input2.txt
input3.txt
...
input1000.txt

and

input00001.txt
input00002.txt
input00003.txt
...
input01000.txt

respectively.
Slurm job arrays always start at 1; the maximum job array size on LiDO3 is 1024. What
to do if you have more than 1024 input directories or files? Use an offset variable and
let the shell do some arithmetics involving the offset variable and the Slurm array index:

LiDO3 | First Contact page 179 of 216

IT & Medien Centrum | LiDO3 | First Contact

...
#SBATCH --array=1-250
...
OFFSET=2000
TOPAS_INPUT_FILE=input$((${SLURM_ARRAY_TASK_ID}+${OFFSET})).txt

will set the variable ${TOPAS_INPUT_FILE} automatically to

input2001.txt
input2002.txt
input2003.txt
...
input2250.txt

A Slurm job script to be start TOPAS as Slurm job arry is shown in the follow-
ing listing 4.25; a copy of this template is also available on LiDO3 from the path
/cluster/sfw/lido3-examples/topas/ slurmarrayjob.sh.

#!/bin/bash -l
#SBATCH --partition=med
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=20
#SBATCH --time=0-03:00:00

memory requirement for all CPUs in megabytes
#SBATCH --mem=6144
#SBATCH --job-name=TOPAS_simulation

PLEASE CHANGE myusername TO YOUR ACTUAL USERNAME!
#SBATCH --output=/work/myusername/slurm_job%A_%a
#SBATCH --error=/work/myusername/slurm_job%A_%a

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de
#SBATCH --mail-type=TIME_LIMIT

Start 1000 instances of this job script
(Note that max value is 1024. Submit multiple Slurm job arrays
and adjust variable SLURM_JOB_ARRAY_INDEX_TO_FILE_INDEX_OFFSET
accordingly for input files that have a higher index.)
#SBATCH --array=1-1000

When a job is within 120 seconds of its end time,
send it the signal SIGQUIT.
Note 1: due to the resolution of event handling

LiDO3 | First Contact page 180 of 216

IT & Medien Centrum | LiDO3 | First Contact

by Slurm, the signal may be sent up to 60
seconds earlier than specified.
Note 2: only *one* signal can be defined. Later
Slurm signal definition override earlier
definitions.
#SBATCH --signal=B:SIGQUIT@120

Start customisation section
(Note: no whitespace allowed in directory or file names!)
SLURM_JOB_ARRAY_INDEX_TO_FILE_INDEX_OFFSET=0

Location of unpacked TOPAS binary
#
Variant 1:
Official CentOS 7 TOPAS binary, provided by Jonathan Perl
↪ himself,

downloaded from https://www.topasmc.org/download.
Advantage : tested & validated
Disadvantage: not optimised for LiDO3 hardware, runs slower
TOPAS_BASE_DIRECTORY=/work/${USER}/topas
#
Variant 2:
Binary compiled from source by LiDO team using compiler
optimisation flags for compute nodes cstd0[12]-* and
cquad0[12]-*
Advantage : untested & not yet validated
Disadvantage: runs faster than prebuild binaries from variant 1
###TOPAS_BASE_DIRECTORY=/cluster/sfw/topas/3.9/hw-opt
#
Variant 3:
Binary compiled from source by LiDO team using even more
aggressive compiler optimisation flags suitable for compute
nodes cstd0[12]-* and cquad0[12]-*
Advantage : untested & not yet validated
Disadvantage: runs faster than prebuild binaries from variant 1
###TOPAS_BASE_DIRECTORY=/cluster/sfw/topas/3.9/aggressive-opt

If all your TOPAS input files are stored in a single directory,
use
TOPAS_INPUT_FILES_DIRECTORY=/work/${USER}/analysis
If, instead, your input directory names are zero-padded,
e.g. named along the lines of
analysis0001/, analysis0002/, analysis0003/, ...
comment out the previous line and uncomment and adapt the
following line. (The magic lies in 'printf' and the
argument '%04d' which turns non-zero padded numbers
into numbers with up to 3 leading zeros which you try with

LiDO3 | First Contact page 181 of 216

IT & Medien Centrum | LiDO3 | First Contact

$ 'printf "%04d\n" 1'
TOPAS_INPUT_FILES_DIRECTORY=$(printf
↪ "/work/${USER}/analysis%04d" $((${SLURM_ARRAY_TASK_ID} +
↪ ${SLURM_JOB_ARRAY_INDEX_TO_FILE_INDEX_OFFSET})))

#
If, instead, you just want to pick the n-th subdirectory in a
directory with many subdirectories, each of which containing a
single set of TOPAS input files, you can use the automatically
assigned Slurm job array task ID (and possibly an offset to work
around the limit of at most 1024 entries in a Slurm job array)
to be that number 'n'.
##TOPAS_INPUT_FILES_DIRECTORY=$(/bin/ls -d
↪ /path/to/my/topas/input/directories/topasinput* | awk "{ if
↪ (NR == $((${SLURM_ARRAY_TASK_ID} +
↪ ${SLURM_JOB_ARRAY_INDEX_TO_FILE_INDEX_OFFSET}))) { print;
↪ }}")

If your TOPAS input files are incrementally numbered, use
TOPAS_INPUT_FILE=input$((${SLURM_ARRAY_TASK_ID} +
↪ ${SLURM_JOB_ARRAY_INDEX_TO_FILE_INDEX_OFFSET})).txt

#
If, instead, you use zero-padded numbers in your TOPAS
input files names uncomment and adapt the following line
TOPAS_INPUT_FILE=$(printf "input%05d.txt" $((
↪ ${SLURM_ARRAY_TASK_ID} +
↪ ${SLURM_JOB_ARRAY_INDEX_TO_FILE_INDEX_OFFSET})))

#

TOPAS_G4_DATA_DIR=/work/${USER}/G4Data

LOCAL_BASE_DIRECTORY=/scratch/${USER}/${SLURM_JOBID}_${SLURM_ARRAY_TASK_ID}
LOCAL_TOPAS_INPUT_FILES_DIRECTORY=${LOCAL_BASE_DIRECTORY}/input
LOCAL_TOPAS_G4_DATA_DIR=${LOCAL_BASE_DIRECTORY}/G4Data

Be verbose about the files that are transferred to the local
hard disk drive of a compute node. Makes debugging easier.
#VERBOSE_FILE_TRANSFER=yes
VERBOSE_FILE_TRANSFER=no
End customisation section

Beyond this point, there should be no need to change the
generic instructions.
COPY_FLAG=""
TAR_FLAG=""
if ["${VERBOSE_FILE_TRANSFER}" == "y" -o

"${VERBOSE_FILE_TRANSFER}" == "yes"]; then
COPY_FLAG="v"

LiDO3 | First Contact page 182 of 216

IT & Medien Centrum | LiDO3 | First Contact

TAR_FLAG="v"
fi

##
To avoid that unnecessary file I/O over the network (whether
it be to the home directory $HOME or the parallel file
system $WORK) copy the TOPAS application, its input files
and the Géant4 data TOPAS operates on to the local hard disk
of the assigned compute node. To a temporary location.
(Note: it probably suffices to just copy the Géant4 data.)
printf "%s Start copying files to local hard disk drive on

↪ %s\n\n" "$(date)" "$(hostname -s)"

Extract Geant4 dataset tarballs to local disk
if [-d "${TOPAS_G4_DATA_DIR}"]; then

mkdir -p ${LOCAL_TOPAS_G4_DATA_DIR}
for file in ${TOPAS_G4_DATA_DIR}/*.tar.gz; do

tar -x${TAR_FLAG}zf ${file} -C ${LOCAL_TOPAS_G4_DATA_DIR}
done
20-200 times slower alternative: copy thousands of files
extracted from the tarball to the local disk
cp -aL${COPY_FLAG} ${TOPAS_G4_DATA_DIR}/*
↪ ${LOCAL_TOPAS_G4_DATA_DIR}

else
if [-z "${TOPAS_G4_DATA_DIR}"]; then

echo "Variable TOPAS_G4_DATA_DIR in Slurm job script is
↪ empty. Aborted." 1>&2

exit 1;
elif [! -d "${TOPAS_G4_DATA_DIR}"]; then

echo "Directory <$TOPAS_G4_DATA_DIR>, configured via
↪ variable TOPAS_G4_DATA_DIR in Slurm job script, does not
↪ exist. Aborted." 1>&2

exit 2;
fi

fi

if [-e ${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}]; then
mkdir -p ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}
cp -aL${COPY_FLAG}
↪ ${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}
↪ ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}

else
if [-z "${TOPAS_INPUT_FILES_DIRECTORY}"]; then

echo "Variable TOPAS_INPUT_FILES_DIRECTORY in Slurm job
↪ script is empty. Aborted." 1>&2

exit 3;

LiDO3 | First Contact page 183 of 216

IT & Medien Centrum | LiDO3 | First Contact

elif [! -d "${TOPAS_INPUT_FILES_DIRECTORY}"]; then
echo "Directory <$TOPAS_INPUT_FILES_DIRECTORY>,

↪ configured via variable TOPAS_INPUT_FILES_DIRECTORY in
↪ Slurm job script, does not exist. Aborted." 1>&2

exit 4;
fi
if [-z "${TOPAS_INPUT_FILE}"]; then

echo "Variable TOPAS_INPUT_FILE in Slurm job script is
↪ empty. Aborted." 1>&2

exit 5;
elif [! -e
↪ "${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}"]; then

echo "TOPAS input file
↪ <${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}>,
↪ configured via variables TOPAS_INPUT_FILES_DIRECTORY and
↪ TOPAS_INPUT_FILE in Slurm job script, does not exist.
↪ Aborted." 1>&2

exit 6;
fi

fi

Copy input files
Variant 1: Selectively copy all input files referenced in

↪ ${TOPAS_INPUT_FILE}
and all files it (recursively) includes via 'includeFile ='
↪ statements.

Copy also all files and directories referred to in input files
↪ using

the keywords '*InputFile' and '*DicomDirectory'. If you need
↪ to extend

this keyword list and do not know how, contact the LiDO team
↪ for help.

Preserve any directory substructure information.
cnt=1;
maxRecursion=10;
filesToParse=${TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE};
inputFilesAndDirs=""
while test -n "${filesToParse}" -a ${cnt} -le ${maxRecursion}; do

cnt=$((cnt + 1));
for file in ${filesToParse}; do

if [-f "${file}" -o \(-L "${file}" -a -f "$(readlink
↪ --canonicalize "${file}")" \)]; then

dirname=$(dirname ${file});
inputFilesAndDirs="${inputFilesAndDirs} ${file}";
Add the included file(s) to the list of files still
to parse. (Only parse files with less than, say,
500 kB. To avoid searching phase space files of
several megabytes (or even larger).)

LiDO3 | First Contact page 184 of 216

IT & Medien Centrum | LiDO3 | First Contact

if [$(stat --format="%s" "${file}") -lt 512000];
↪ then

Some files or directories are explicitly named
filesToParse=$(echo ${filesToParse}; sed -n -E

↪ 's/#.*$//;
↪ s/(includeFile|^.*InputFile|^.*DicomDirectory)[[:space:]]*=//p;'
↪ ${file} | tr -d ' \r' | xargs --no-run-if-empty -n 1 | sed
↪ -e "s|^|${dirname}/|");

For other files only their basename is
specified, e.g.
s:So/PhasespacesourcePMMA/PhaseSpaceFileName

↪ = "a"
will cause TOPAS to look for both "a.header"
and "a.phsp". Add both files to list.
filesToParse=$(echo ${filesToParse}; sed -n -E

↪ 's/#.*$//; s/^.*PhaseSpaceFileName[[:space:]]*=//p;'
↪ ${file} | tr -d ' \r' | xargs --no-run-if-empty -n 1 | sed
↪ -E 's/^(.*)$/\1.header\n\1.phsp/' | sed -e
↪ "s|^|${dirname}/|");

else
echo "Warning: Skipped parsing large file

↪ <${file}> for include keywords" 1>&2
fi

elif [-d "${file}"]; then
inputFilesAndDirs="${inputFilesAndDirs} ${file}";

fi;
Remove just parsed file from list of files
still to parse
filesToParse=$(echo ${filesToParse} | sed -E

↪ "s|^${file}\b||;");
done;

done;
Remove ${TOPAS_INPUT_FILES_DIRECTORY} prefix from all files
to copy in order to avoid that this path prefix gets
re-created on the local hard disk drive as well.
inputFilesAndDirs=$(echo ${inputFilesAndDirs} | sed -e

↪ "s|${TOPAS_INPUT_FILES_DIRECTORY}/||g")
tar -C ${TOPAS_INPUT_FILES_DIRECTORY} -chf - ${inputFilesAndDirs}
↪ | tar -C ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}
↪ -x${TAR_FLAG}f -;

Variant 2: potentially very slow alternative to the complex
while-for-loop above: brute forcibly copy everything from
input directory to local HDD
cp -aL${COPY_FLAG} ${TOPAS_INPUT_FILES_DIRECTORY}/*
↪ ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}

LiDO3 | First Contact page 185 of 216

IT & Medien Centrum | LiDO3 | First Contact

printf "%s Finished copying files to local hard disk drive on
↪ %s\n\n" "$(date)" "$(hostname -s)"

##

##
In the case your job prematurely terminates (i.e. wall time
exceeded or you abort it via 'scancel'), temporary files
we copied to /scratch will be left in that directory.
This has led multiple times in the past to a situation where
the local /scratch directories filled up quicker than the
automatic cleanup script would remove the orphaned files.
##
To save off your data and clean up the /scratch when a job
aborts, a trap function can be used. It is called once the
login shell intercepts certain system signal (here: either
one of the signals USR1, SIGQUIT, SIGINT, SIGABRT, SIGKILL,
SIGHUP, SIGTERM, EXIT, TERM).
##
The 'SBATCH --signal=B:SIGQUIT@<time>' instruction we added
to the header of this scripts ensures that Slurm will send
an abort signal up to <time> seconds before the job reaches
the configured time limit. This signal is handled here, too.
finalize_job()
{

printf "%s Shell function finalize_job invoked\n\n" "$(date)"

Check whether copy destination directory is home directory.
If so, do not try to salved any data because the home
directory is read-only on the compute nodes. Hence, we can
not copy files to $HOME.
Test this by checking whether ${HOME} is a substring of the
variable ${TOPAS_INPUT_FILES_DIRECTORY}. How? By trying to
remove the substring and checking the resulting two strings.
if ["${TOPAS_INPUT_FILES_DIRECTORY##${HOME}}" !=
↪ "${TOPAS_INPUT_FILES_DIRECTORY}"]; then

printf "%s Can not copy any file TOPAS created locally
↪ back to ${TOPAS_INPUT_FILES_DIRECTORY}, because destination
↪ is read-only on %s\n\n" "$(hostname -s)"

else
cp -ru${COPY_FLAG} ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}/*

↪ ${TOPAS_INPUT_FILES_DIRECTORY}
fi
rm -rf ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}
↪ ${LOCAL_TOPAS_G4_DATA_DIR} ${LOCAL_BASE_DIRECTORY}

}
trap -- 'finalize_job' USR1 SIGINT SIGABRT SIGKILL \

SIGHUP SIGTERM EXIT TERM

LiDO3 | First Contact page 186 of 216

IT & Medien Centrum | LiDO3 | First Contact

time_limit()
{

printf "\n\n### TIME LIMIT
↪ ######################################\n";

printf "%s\nSlurm send us signal SIGQUIT:\n";
printf "This job is about to exceed its configure time";
printf "limit.\n Salvaging generated data from /scratch to";
printf "persistent\nstorage.\n" "$(date)"
printf
↪ "###\n\n";

finalize_job
}
trap -- 'time_limit' SIGQUIT
##

Switch to local copy of input files and start TOPAS
application
export TOPAS_G4_DATA_DIR=${LOCAL_TOPAS_G4_DATA_DIR}
cd ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}

Tweak input file such that TOPAS will use (at most) as many
↪ threads

as we requested from SLURM with this job script
sed -i -E
↪ "s|Ts/NumberOfThreads[[:space:]]*=.*\$|Ts/NumberOfThreads =
↪ ${SLURM_CPUS_PER_TASK}|"
↪ ${LOCAL_TOPAS_INPUT_FILES_DIRECTORY}/${TOPAS_INPUT_FILE}

Dynamically determine the physical numbers of all cores
Slurm assigned to this Slurm job.
With a Slurm request that exclusively reserves an entire
compute node like
--cpus-per-task=20 --constraint=[cstd01|cstd02]
the answer is trivial: 0-19. For a Slurm job that asked
for an entire quad compute node using
--cpus-per-task=48 --constraint=[cquad01|cquad02]
the answer is trivial, too: 0-47.
But when asking less than 20 cores on a cstd01/cstd02 compute
node or less than 48 cores on a cquad01/cquad02 compute node,
we can not assume 0-<max number requested cpus per task>.

Unfortunately, the general case of a non-exclusively assigned
compute node make things complicated for the helper application
'likwid-pin'. Say the compute node has 20 physical cores,
physical numbers 0-19. You asked for 5. Slurm assigned your
job the physical cores 4, 5, 11, 12, 18. 'likwid-pin' (up to

LiDO3 | First Contact page 187 of 216

IT & Medien Centrum | LiDO3 | First Contact

version 5.3.0), sadly, detects that all physical cores and that
you only got a subset. In that case, it interprets any core
numbers as 'logical' numbers, i.e it numbers the physical cores
4, 5, 11, 12, 18 as 0, 1, 2, 3, 4. To pin the processes to the
assigned cores you cannot use
$ likwid-pin -c N:4,5,11,12,18 topas
as LIKWID implicitly converts this to
$ likwid-pin -c L:N:4,5,11,12,18 topas
but have to use
$ likwid-pin -c L:N:0,1,2,3,4 topas
or
$ likwid-pin -c L:N:0-4 topas
So, we need to determine those logical numbers of the fly.
ASSIGNED_CORES=$(cnt=0; numactl --show | sed -n -e
↪ '/^physcpubind: / { s/^physcpubind: //; p; }' | xargs -n 1
↪ | while read core; do echo $cnt; cnt=$((cnt + 1)); done |
↪ paste -sd,)

ASSIGNED_SOCKETS=$(numactl --show | sed -n -e '/^nodebind: / {
↪ s/nodebind: //; s/ /,/g; s/,$//; p; }')

Start TOPAS application, but:
* do pin the application to all those cores of a compute node
that Slurm assigned to this job, without touching the code
using 'likwid-pin' (see https://youtu.be/PSJKNQaqwB0)
* place memory round-robin across all assigned compute cores,
not an optimal strategy, but oftentimes it leads to better
runtimes than the default memory placement called
'first touch policy placement' (see https://moodle.nhr.fau.de/
pluginfile.php/5823/mod_resource/content/2/04_ccNUMA.pdf)
module load gcc/12.2.0 likwid/5.3.0 # for pinning
numactl --interleave=${ASSIGNED_SOCKETS} \

likwid-pin -c L:N:${ASSIGNED_CORES} \
${TOPAS_BASE_DIRECTORY}/bin/topas ${TOPAS_INPUT_FILE} &

wait

IMPORTANT: At the end of your job you will need to copy
everything back from scratch to your original
work directory. Otherwise, your results will get lost,
because you can not access the local file system that
easy and more - and contents in /scratch not belonging to
a running job any more get cleaned at regular intervalls
automatically.
Given that we already have a shell function that takes
care of this task when the Slurm job aborts, rely on it
for a TOPAS simulation that ran smootly, too.
printf "%s Start salvaging TOPAS output from local hard disk

↪ drive to persistent storage\n\n" "$(date)"
finalize_job

LiDO3 | First Contact page 188 of 216

IT & Medien Centrum | LiDO3 | First Contact

printf "%s Finished salvaging TOPAS output from local hard disk
↪ drive to persistent storage\n\n" "$(date)"

Optional: remove trap definition
trap - USR1 SIGQUIT SIGINT SIGABRT SIGKILL \

SIGHUP SIGTERM EXIT TERM

Listing 4.25: Contents of Slurm job array script to efficiently run hundreds of
TOPAS simulation
A copy is available from path /cluster/sfw/lido3-examples/
topas/slurmarrayjob.sh

4.5.14 Third-party node usage example
In this case, the partition is related to the nodes itself and no additional constraint is
needed to identify the nodes to be used.

#!/bin/bash -l
#SBATCH --time=00:10:00
#SBATCH --nodes=1 --cpus-per-task=20
#SBATCH --partition=ext_vwl_prio
#SBATCH --mem=250000

PLEASE CHANGE my.name TO YOUR ACTUAL MAIL ADDRESS!
#SBATCH --mail-user=my.name@tu-dortmund.de
Possible 'mail-type' values: NONE, BEGIN, END, FAIL, ALL
↪ (=BEGIN,END,FAIL)

#SBATCH --mail-type=ALL

cd /work/user/workdir
module purge
module load pgi/17.5
export OMP_NUM_THREADS=20
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID
↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"

echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"
srun ./myapp

4.5.15 Signals and traps

LiDO3 | First Contact page 189 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.5.15.1 Have a job automatically clean up when exceeding requested wall-
clock time limit

By default, Slurm (up to version 22.05) sends two different signals to a job that
exceeded its requested walltime. The first signal is SIGQUIT and can be intercepted
by a shell or user program, the second SIGTERM definitely pulls the plug on all your
processes started as part of your Slurm job. The amount of time Slurm waits after the
first signal is send before sending the second is controlled by the Slurm configuration
parameter KillWait. You can use

$ scontrol show config | grep KillWait

to verify that it is set on LiDO3 to 30 s.
It may, however, be that your Slurm job needs more time than when receiving the first
signal SIGQUIT. For instance, moving result files from the /scratch file system to
the parallel file system or cleaning up any remaining temporary files may take longer
than these 30 seconds. In these cases, the user needs to set up three things in a Slurm
job script:

1. A SBATCH instruction when to send what kind of signal. This can be done
by including the following lines (only the #SBATCH instruction is the actual
workhorse, the preceding lines are mere comments for the reader) in the header
section of the Slurm job script

When a job is within 120 seconds of its end time,
send it the signal SIGQUIT.
Note 1: due to the resolution of event handling
by Slurm, the signal may be sent up to 60
seconds earlier than specified.
Note 2: only *one* signal can be defined. Later
Slurm signal definition override earlier
definitions.
#SBATCH --signal=B:SIGQUIT@120

which sends approximately 2 minutes before exceeding the wall time the signal
SIGQUIT.

2. A shell trap trying to catch the signal and defining an action to undertake upon
receiving it. Example:

LiDO3 | First Contact page 190 of 216

IT & Medien Centrum | LiDO3 | First Contact

trap -- 'echo \"Got SIGQUIT at $(date). Starting cleanup\";
↪ test -d /scratch/${USER}/${SLURM_JOB_ID} && rm -rf
↪ /scratch/${USER}/${SLURM_JOB_ID}' SIGQUIT;

This oneliner is hard to read such that some users may prefer the alternative of
a custom shell function defining the actions near job end:

cleanup_before_exiting() {
echo -n 'Got SIGQUIT at $(date),';
echo -n 'roughly 2 minutes before exceeding the';
echo 'walltime. Starting clean up.';
test -d /scratch/${USER}/${SLURM_JOB_ID} && \

rm -rf /scratch/${USER}/${SLURM_JOB_ID}
exit 0;

}
trap -- 'cleanup_before_exiting' SIGQUIT

3. Finally, it is absolutely mandatory to send any of the long-running processes
your Slurm job will execute immediately to the background by adding a trailing
ampersand to that process’ command and to subsequently add a ’wait’ shell
command that causes the shell invoked by your Slurm job file (see the shebang
line, e.g. #/bin/bash!, at the beginning of your Slurm job script) to wait for the
completion of the long-running process before continuing. Example:

Start the actual worker process (a simple 'sleep'
in this example).
Note: It is absolutely mandatory to immediately
send the job to the background with the
trailing ampersand and then use the 'wait'
shell command to wait for the completion of
the worker process. Otherwise the Slurm
signal is *not* caught by this Slurm job
script and the configured action to run
shortly before exceeding the requested
walltime will *not* run!
sleep 600 &
wait

A complete Slurm job file example is given below:

#!/bin/sh -l

LiDO3 | First Contact page 191 of 216

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH --time=00:04:00
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=1
#SBATCH --partition=short
#SBATCH --mail-type=NONE
When a job is within 120 seconds of its end time,
send it the signal SIGQUIT.
Note 1: due to the resolution of event handling
by Slurm, the signal may be sent up to 60
seconds earlier than specified.
Note 2: only *one* signal can be defined. Later
Slurm signal definition override earlier
definitions.
#SBATCH --signal=B:SIGQUIT@120

useTrapVariant=2

if test ${useTrapVariant} = 1; then
###################################
Example 1: Simple signal handling with a
one-liner: print a message, then start
cleaning up in /scratch before job exceeds
requested walltime.
trap -- 'echo \"Got SIGQUIT at $(date). Starting
↪ cleanup\"; \

test -d /scratch/${USER}/${SLURM_JOB_ID} && \
rm -rf /scratch/${USER}/${SLURM_JOB_ID}' SIGQUIT;

else
###################################
Example 2: Same prupose, but more readable
with a user function; print a message, then
start cleaning up in /scratch before job
exceeds requested walltime.
cleanup_before_exiting() {

echo -n 'Got SIGQUIT at $(date),';
echo -n 'roughly 2 minutes before exceeding the';
echo 'walltime. Starting clean up.';
test -d /scratch/${USER}/${SLURM_JOB_ID} && \

rm -rf /scratch/${USER}/${SLURM_JOB_ID}
exit 0;

}
trap -- 'cleanup_before_exiting' SIGQUIT

fi

Start the actual worker process (a simple 'sleep'
in this example).
Note: It is absolutely mandatory to immediately
send the job to the background with the

LiDO3 | First Contact page 192 of 216

IT & Medien Centrum | LiDO3 | First Contact

trailing ampersand and then use the 'wait'
shell command to wait for the completion of
the worker process. Otherwise the Slurm
signal is *not* caught by this Slurm job
script and the configured action to run
shortly before exceeding the requested
walltime will *not* run!
sleep 600 &
wait

Optional: remove trap definition
trap - SIGQUIT

4.5.15.2 Passing Signals to your running application

If your program needs to be informed about unforseen circumstances via pre-defined
signals, this can be somewhat hard via the MPI’s own wrappers. For example, the
OpenMPI 4.0 mpirun manpage states

When orterun receives a SIGTERM and SIGINT, it will attempt to
kill the entire job by sending all processes
in the job a SIGTERM, waiting a small number of seconds,
then sending all processes in the job a SIGKILL.
SIGUSR1 and SIGUSR2 signals received by orterun are propagated
to all processes in the job.

A SIGTSTOP signal to mpirun will cause a SIGSTOP signal to be
sent to all of the programs started by mpirun and likewise a
SIGCONT signal to mpirun will cause a SIGCONT sent.

Other signals are not currently propagated by orterun.

Thus it would not be possible for your application to receive a SIGINT signal via
mpirun/orterun.
In this case one has to use srun -X to start the application. Let’s again cite the
manpage from Slurm, too:

-X, --disable-status
Disable the display of task status when srun receives a single
SIGINT (Ctrl-C). Instead immediately forward the SIGINT to the
running job.
Without this option a second Ctrl-C in one second is required to
forcibly terminate the job and srun will immediately exit.
May also be set via the environment variable SLURM_DISABLE_STATUS.

LiDO3 | First Contact page 193 of 216

IT & Medien Centrum | LiDO3 | First Contact

This option applies to job allocations.

Based on the learnings from the previous section 4.5.15.1 we can now prolongate or
map any signal send to our Slurm job to the running application.

[...]
#SBATCH --signal=B:SIGINT@30
[...]
APP_PID=0
signal_trap() {

kill -SIGINT $APP_PID
wait
exit 0

}
[...]
trap -- 'signal_trap' SIGINT
srun -X my-application &
APP_PID=$!
wait

Optional: remove trap definition
trap - SIGINT

Note, that we need to favor srun over mpirun to get the signal from the kill
command to our actual application.

List of common signals and their corresponding number:

1 SIGHUP
2 SIGINT
3 SIGQUIT
6 SIGABRT
9 SIGKILL
14 SIGALRM
15 SIGTERM

4.5.15.2.1 Sending arbitrary signals to a Slurm job
If you want to send a signal to your job besides the timeout-triggered signal described
above, you can trigger these signals on your own via

LiDO3 | First Contact page 194 of 216

IT & Medien Centrum | LiDO3 | First Contact

scontrol -s USR1 JOB_ID
or
scancel --signal=KILL JOB_ID

4.5.16 Example for job steps
A job consists of
◾ one or more steps,
◾ each step executing one or more tasks,
◾ each task using one or more CPU.

Typically, jobs are created with the sbatch command, containing steps that are
created with the srun command.
Tasks are requested (at the job level or the step level) with --ntasks and CPUs82

are requested per task with --cpus-per-task.
Note that jobs submitted with sbatch have one implicit step — the Bash script itself.

#!/bin/bash -l
#SBATCH --nodes 7
#SBATCH --tasks-per-node 6
#SBATCH --cpus-per-task 1
The job requests 42 CPUs, on 7 nodes, every task will use 1 cpu.

STEP 01:
request 7 nodes,
sub-allocate 7 tasks (one per node) to create a directory
in /scratch.
Must run on every node, but only one task per node needed.
srun --nodes 7 --tasks 7 mkdir -p /scratch/${USER}_${SLURM_JOBID}

STEP 02:
No explicit allocation, hence use all 42 tasks to run an
MPI program on some data to produce some output.
srun mpi_process.mpi <input.dat > output.txt &

STEP 03:
sub-allocate 24 tasks for a not well scaling program.
srun --ntasks 24 --nodes 4 --exclusive \
reduce_mpi_data < output.txt > result.txt &

82CPU cores to be more precise.

LiDO3 | First Contact page 195 of 216

IT & Medien Centrum | LiDO3 | First Contact

STEP 04:
sub-allocate a single node.
The gzip cannot run on separate nodes to compress output.txt.
Thanks to the ampersand `&` in the previous srun command, this
step runs concurrently with the previous step.
OMP_NUM_THREAD=10 srun --ntasks 10 --nodes 1 \
--exclusive gzip output.txt &

wait for the steps to finish
wait

4.5.17 Example for parallel debugging with TotalView
TotalView 83 is a HPC debugging software for parallel debugging of C/C++, Fortran
and mixed-language python applications. It is a available as a module 85.

The TotalView remote debugging setup consists of three elements:
◾ The GUI visualisation on the user’s computer, received from the gateway
◾ The TotalView master running on the gateway/frontend
◾ The tvconnect debugger client, running on the compute nodes

Figure 4.50: TotalView debugging overview
83TotalView84 website
85see section Modules in job scripts on page 77

LiDO3 | First Contact page 196 of 216

https://totalview.io/product/totalview/

IT & Medien Centrum | LiDO3 | First Contact

To start the debugging process, you need to make shure that you are able to start
a GUI application on LiDO3. If you happen to have an X server on your side of the
connection, you may simply use ssh with the -X parameter to tunnel the applications
rendering to your workstation or you may use a ThinLinc connection to use a Desktop
on a LiDO3 gateway server.

TotalView organises the communication between the debugger on the compute node
(tvconnect) and the GUI on the gateway server (totalview) via a shared direc-
tory, that needs to adhere to special file permissions 86. The easiest way to ensure
these constrains is to let TotalView itself create the directory on the /work/$USER
directory. Thus one needs to define the shell variable TV_REVERSE_CONNECT_DIR
whenever calling any TotalView binary. We will use /work/$USER/.totalview
in the reminder of this section. This can be easily achieved by adding

export TV_REVERSE_CONNECT_DIR=/work/$USER/.totalview

to your shell rc file, e.g. .bashrc or .cshrc.
The next step is to preprend the usual mpirun or srun call in your Slurm job script
with tvconnect.

tvconnect mpirun -n 80 ./helloworld

Obviously, your program should be compiled with debugging symbols and maybe
without any optimisations. For example with GCC that would mean using the flags
-O0 -g.
To start the actual debugging, you must make sure, that the totalview GUI ap-
plication is running on the gateway server (i.e. shows a windows on your screen) and
that your job to be debugged is executing with the aforementioned changes. In this
case, a dialog will be presented in the GUI whether you want to start debugging your
application.

86see the documentation87 for a detailed description

LiDO3 | First Contact page 197 of 216

https://docs.roguewave.com/en/totalview/2020/html/index.html#page/TotalView/totalviewlhug-reverse-connect.17.03.html

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.51: TotalView dialog for incoming debugging process

Note that your Slurm job will be on hold until you start debugging in the GUI or the
maximum walltime is reached. That is it, now the TotalView debugger is hooked to
your program and you can begin the actual debugging process.

LiDO3 | First Contact page 198 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.6 System overview
◾ name: LiDO3
◾ architecture: Distributed Memory
◾ vendor: Megware
◾ installation: 2017

standard
Intel® Xeon E5-2640v4

244 nodes

2x CPU (2.4 GHz)

10 core Broadwell

64 GB RAM

standard 1:1
Intel® Xeon E5-2640v4

72 nodes

2x CPU (2.4 GHz)

10 core Broadwell

64 GB RAM

…

GPU
Intel® Xeon E5-2640v4

20 nodes

2x CPU (2.4 GHz)

10 core Broadwell

64 GB RAM

2x GPU NVIDIA® K40

…

University network

…

quad-fat
Intel® Xeon E5-4640v4

2 nodes

4x CPU (2.1 GHz)

12 core Broadwell

1024 GB RAM

……

quad
Intel® Xeon E5-4640v4

28 nodes

4x CPU (2.1 GHz)

12 core Broadwell

256 GB RAM

© TU Dortmund / ITMC / CC:HPC / jg / 2017-06-06

LiDO3

schematic representation

HPC Cluster

LiDO3

highspeed

network

Intel® True Scale

QDR-40

Fat Tree

blocking ratio

1:3

1:1

(non-blocking)

service/

management-

network

Ethernet

1 & 10 Gbit/s

metadata

server
2 server

…

object storage

server
5 server

1.28 PB (net)

disk storage
11.5 TB (net)

fileserver

/home
2 server

NFS

gateway server
Intel® Xeon E5-4620v4

2 server

4x CPU (2.1 GHz)

10 core Broadwell

256 GB RAM

parallel filesystem

40 free

slots for

additional

nodes

…

Figure 4.52: Schematic representation of the LiDO3 architecture.

LiDO3 | First Contact page 199 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.7 Dictionary

4.7.1 Walltime
Walltime, or Wall-Clock Time is the passage of time from the moment a job is as-
signed one or multiple compute nodes and started until it ends, seen from the human
perspective. In other words, if the job is started but some necessary resource is missing
or becomes unavailable while the job is still running (e.g., filesystem, network, results
from a previous computation as input data), walltime increases. In this case, whether
or not CPU time increases depends on whether the processes started by the job per-
form a busy-wait or put the CPU to sleep while waiting for the necessary resource to
become available again. So, if a requested CPU waits for seven hours for resources
and intermittendly uses the CPU for one hour, walltime is 8 hours, CPU time is 1
hour. When using multiple cores, the CPU time is accordingly scaled - walltime is not,
obviously.

Figure 4.53: A job waiting more than utilizing the CPU uses eight hours walltime total.

4.7.2 Backfilling
Backfilling is a mechanism that allows starting a job with lower priority before a job
with higher priority in the queue without delaying the job with the higher priority. By
doing this Backfilling helps to maximize cluster utilization and throughput.
Let Job A be a job that just has started. Job B needs the nodes that are currently
used by Job A and some extra nodes. Thus it can only start after Job A has been
finished.

LiDO3 | First Contact page 200 of 216

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.54: Job B is waiting for nodes used by Job A.

Job C is smaller than Job A - it will use less Walltime. And it does not depend on
nodes that are used by Job A. This means that Job C can be started before Job B
without delaying Job B.

Figure 4.55: Job C is started before Job B because it will be finished before Job B
can start.

LiDO3 | First Contact page 201 of 216

IT & Medien Centrum | LiDO3 | First Contact

Filling those gaps in the execution plan is called Backfilling.

4.8 Get support / contact
For support and further assistance, please write an email to the ITMC service desk88

(service.itmc@tu-dortmund.de) to open a support ticket.
Acknowledging the use of LiDO3 in publications and informing the LiDO team about
these publications is crucial for the funding of this and future HPC machines. Please
inform us via email89 (lido-team.itmc@lists.tu-dortmund.de), if wou wrote any papers
using utilizing LiDO3.
Of course you can still contact the LiDO team via email for other purposes if a support
ticket does not fit.

4.9 Frequently asked questions

4.9.1 My Slurm job exits with can't open /dev/ipath,
↪ network down (err=26)

Your job encountered a race conditions, described in detail at bugs.schedmd.com90.
This sometimes happens if multiple users try to use MPI on the same node indepen-
dently.
Until this is fixed by the MPI vendors, a common work-around is to use the nodes all
alone by adding

##SBATCH --exclusive

to your Slurm job script.
If you happen to use Intel MPI, another solution may be to define a certain environment
variable by adding

export I_MPI_HYDRA_UUID=`uuidgen`

88mailto:service.itmc@tu-dortmund.de?subject=LiDO3:%20support%
20needed

89mailto:lido-team.itmc@lists.tu-dortmund.de?subject=LiDO3%
20acknowledement

90https://bugs.schedmd.com/show_bug.cgi?id=5956

LiDO3 | First Contact page 202 of 216

mailto:service.itmc@tu-dortmund.de?subject=LiDO3:%20support%20needed
mailto:lido-team.itmc@lists.tu-dortmund.de?subject=LiDO3%20acknowledement
https://bugs.schedmd.com/show_bug.cgi?id=5956
mailto:service.itmc@tu-dortmund.de?subject=LiDO3:%20support%20needed
mailto:service.itmc@tu-dortmund.de?subject=LiDO3:%20support%20needed
mailto:lido-team.itmc@lists.tu-dortmund.de?subject=LiDO3%20acknowledement
mailto:lido-team.itmc@lists.tu-dortmund.de?subject=LiDO3%20acknowledement
https://bugs.schedmd.com/show_bug.cgi?id=5956

IT & Medien Centrum | LiDO3 | First Contact

to your job script and thus inhibit the race condition.

4.9.2 No GPU is visible on a GPU node
In order to actively use a GPU, you need to add

#SBATCH --gres=gpu:n

to your Slurm job script, where n denotes the number of GPUs you want to use.

4.9.3 How can I use more than one CPU socket on a GPU
node?

Every CPU socket is bound to one GPU. Thus if you want to use more than one CPU
socket (i.e. more than 10 cores), you need to allocate both GPUs with

#SBATCH --gres=gpu:2

4.9.4 Can I have Visual Studio Code on LiDO3?
Short answer: No, we will not install it globally and strongly discourage its use on
LiDO3. Because with 200+ active LiDO3 users and 2 gateway servers with 256 GiB
of RAM each to serve those 200+ users, Visual Studio Code as of June 2023 has a
prohibitively expensive memory footprint.
Long answer:

You probably have already used Visual Studio Code (or short vscode) before and like
it a lot. So do we, it is a great editor from the user’s perspective. But there is a
downside from our system administrators’ point of view:
vscode is a resource hugging monster. And that is due to the fact that it is built upon
the Electron framework91. That basically means that the single binary code contains
a Javascript based web server started in the background running inside a V8 Javascript
engine92 that hosts the application itself - the GUI you interact with is more or less a
stripped-down browser. So what you perceive as a simple editor application is another
browser installed on your system with the storage footprint a browser nowadays usually
has.

91https://en.wikipedia.org/wiki/Electron_(software_framework)
92https://v8.dev/

LiDO3 | First Contact page 203 of 216

https://en.wikipedia.org/wiki/Electron_(software_framework)
https://v8.dev/
https://v8.dev/
https://en.wikipedia.org/wiki/Electron_(software_framework)
https://v8.dev/

IT & Medien Centrum | LiDO3 | First Contact

On startup vscode consumes a lot of memory, which is totally fine as long as it happens
on your local workstation or laptop. We have seen instances of vscode using 40 GB of
reserved RAM when freshly started and with no files open.
If three or more users open vscode on one of the LiDO3 gateway servers, this has a
significant impact on every other user currently working on that gateway. For that
reason we have removed the vscode software from the gateway servers.
You might feel inclined to use vscode locally on your workstation with the Visual Stu-
dio Code Remote - SSH extension93 enabled to circumvent that sitation. But, sadly,
that leads to the same results: One could think that the extension merely synchronizes
the editid files via a SSH connection and all the memory expensive stuff is happening
locally on your machine. But no, the authors of the extension felt it was a good idea
to start a complete V8 Javascript engine with the full Electron stack on the remote
side (which would be one of the LiDO3 gateways in this case) and do all the file
parsing, IntelliSense (completions), code navigation, and debugging remotely. So all
the memory expensive stuff does not happen on your local machine! That also means
that all your extensions that deal with the source code you write, run on the remote
SSH host, i.e. the LiDO3 gateways (see section Managing extensions)94.
Some people reported that issue here95 and here96, but it was closed without a solution.
Nonetheless, we have seen cases where a gateway was completely idle, started to get
used by two users, both using Visual Studio Code Remote - and that 256 GiB of RAM
were not enough to satisfy the memory needs of both editor instances. As a result,
the Visual Studio Code instance of one user crashed with an out-of-memory event.

4.9.5 I can not open X11 programs on one gateway or compute
node, but not on others

If you are logged in to the LiDO3 cluster and you get an error message like

X11 connection rejected because of wrong authentication

when you open a graphical program (like emacs, matlab, mathematica, paraview
etc.), there is typically a problem with orphaned entries in the file /work/$USER/.Xauthority.97

This file contains authorization codes (so-called magic cookies) to allow accessing the
93https://code.visualstudio.com/docs/remote/ssh
94https://code.visualstudio.com/docs/remote/ssh
95https://github.com/microsoft/vscode-remote-release/issues/1110
96https://github.com/microsoft/vscode/issues/151205
97See the wikipedia page on X window authorization98 for more details.

LiDO3 | First Contact page 204 of 216

https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://github.com/microsoft/vscode-remote-release/issues/1110
https://github.com/microsoft/vscode/issues/151205
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://github.com/microsoft/vscode-remote-release/issues/1110
https://github.com/microsoft/vscode/issues/151205
https://en.wikipedia.org/wiki/X_Window_authorization#Cookie-based_access

IT & Medien Centrum | LiDO3 | First Contact

X11 display server on the gateway server or compute node while being connected to
it over the network from your laptop or workstation. The file is managed by program
xauth; typically the operating system takes care for you in the background of au-
tomatically adding the appropriate magic cookie to this file on login and removing it
again on logout. If, however, a login session on the gateways or an interactive Slurm
session on a compute node is terminated, magic cookies might not get removed prop-
erly. They pile up in the file /work/$USER/.Xauthority. Subsequently opened
login sessions might get assigned the same display name of one of those orphaned X11
sessions, the new magic cookie will not get stored. X11 programs will try to use the
old magic cookie, but authorization will fail and you end up with the error message
above.
To resolve this issue, either delete the entire content of /work/$USER/.Xauthority,
e.g. via

$ sed -i -e 'd' /work/$USER/.Xauthority

or remove individual entries from it via xauth remove <entry> where <entry>
is one of the names in column 1 of the output of

$ xauth list

LiDO3 | First Contact page 205 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.10 Appendix

4.10.1 Symbolic links for non-writable home directory
Here is an example of some software that needs to write in the home directory during
runtime. ${NEWUSER} contains the name of the user that is affected.

Software like 'matplotlib' (standalone or inside ParaView)
↪ tries to write a

lock file to
↪ $HOME/.cache/matplotlib/tex.cache/.matplotlib_lock-*.
↪ Without

this symbolic link, matplotlib would fail when run on compute
↪ nodes.

$ ssh gw01
$ mkdir /work/${NEWUSER}/.allinea
$ ln -s /work/${NEWUSER}/.allinea /home/${NEWUSER}/.allinea
$ mkdir /work/${NEWUSER}/.ansys
$ ln -s /work/${NEWUSER}/.ansys /home/${NEWUSER}/.ansys
$ mkdir /work/${NEWUSER}/.cache
$ ln -s /work/${NEWUSER}/.cache /home/${NEWUSER}/.cache
$ mkdir -p /work/${NEWUSER}/.ccache
$ ln -s /work/${NEWUSER}/.ccache /home/${NEWUSER}/.ccache
$ mkdir -p /work/${NEWUSER}/.cmake/packages
↪ /home/${NEWUSER}/.cmake

$ mkdir /work/${NEWUSER}/.cfx
$ ln -s /work/${NEWUSER}/.cfx /home/${NEWUSER}/.cfx
$ ln -s /work/${NEWUSER}/.cmake/packages
↪ /home/${NEWUSER}/.cmake/packages

$ mkdir /work/${NEWUSER}/.config
$ ln -s /work/${NEWUSER}/.config /home/${NEWUSER}/.config
$ mkdir /work/${NEWUSER}/.felix
$ ln -s /work/${NEWUSER}/.felix /home/${NEWUSER}/.felix
$ mkdir /work/${NEWUSER}/felix-cache
$ ln -s /work/${NEWUSER}/felix-cache /home/${NEWUSER}/felix-cache
$ mkdir /work/${NEWUSER}/.java
$ ln -s /work/${NEWUSER}/.java /home/${NEWUSER}/.java
$ touch /work/${NEWUSER}/.lesshst
$ ln -s /work/${NEWUSER}/.lesshst /home/${NEWUSER}/.lesshst
$ mkdir /work/${NEWUSER}/.matlab
$ ln -s /work/${NEWUSER}/.matlab /home/${NEWUSER}/.matlab
$ mkdir /work/${NEWUSER}/.oracle_jre_usage
$ ln -s /work/${NEWUSER}/.oracle_jre_usage
↪ /home/${NEWUSER}/.oracle_jre_usage

$ mkdir -p /work/${NEWUSER}/.ssh
$ ln -s /work/${NEWUSER}/.ssh /home/${NEWUSER}/.ssh
$ mkdir /work/${NEWUSER}/.subversion

LiDO3 | First Contact page 206 of 216

IT & Medien Centrum | LiDO3 | First Contact

$ ln -s /work/${NEWUSER}/.subversion /home/${NEWUSER}/.subversion
$ mkdir /work/${NEWUSER}/.Mathematica
$ ln -s /work/${NEWUSER}/.Mathematica
↪ /home/${NEWUSER}/.Mathematica

$ mkdir "/work/${NEWUSER}/Wolfram Mathematica"
$ ln -s "/work/${NEWUSER}/Wolfram Mathematica"
↪ "/home/${NEWUSER}/Wolfram Mathematica"

$ mkdir /work/${NEWUSER}/.Wolfram
$ ln -s /work/${NEWUSER}/.Wolfram /home/${NEWUSER}/.Wolfram
#does not work $ touch /work/${NEWUSER}/.viminfo
#does not work $ ln -s /work/${NEWUSER}/.viminfo
↪ /home/${NEWUSER}/.viminfo

$ touch /work/${NEWUSER}/.Xauthority
$ ln -s /work/${NEWUSER}/.Xauthority /home/${NEWUSER}/.Xauthority

LiDO3 | First Contact page 207 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.10.2 Migrating your Slurm scripts to full node usage
The following approaches have proven to work for a wide variety of use cases. Each
of them assumes that your current calculation executed by a single program call is not
able to utilize a complete LiDO3 node. It further assumes that you want to execute this
program multiple times, possibly for differing input data. It is up to you (for example
inside a short benchmarking session) to know or figure out how many program calls
can be done in parallel on a single node to utilize – but not overutilize – the available
resources (e.g. CPU cores or amount of memory or memory bandwidth).
Obviously, this guide cannot provide any solution for cases where you only want to
execute one serial, single-threaded program call at a time – this usage model is not
suited for a compute cluster at all.

4.10.2.1 Executing several processes concurrently in the background

If your programs are not compiled with MPI support at all, you can exploit a com-
mon shell feature: every command is executed in the background if followed by the
ampersand character, &. In other words, the command is run, but – unlike when run
in foreground mode – control is immediately passed back to the shell such that one
can interactively enter and invoke other commands. Or have another program start in
non-interactive, i.e. batch, mode.
To explicitly wait for all programs started by your Slurm script and that are being
executed in the background to finish, before control is passed back to the shell (i.e.
the shell is ready to execute a new command), issue the command wait.

As there is no Slurm logic involved in the program startup at all, this approach
does only work on a single node. If you want to allocate multiple nodes at once, this
approach won’t work for you because the Slurm script is only executed on the first of
those compute nodes.

As there is now only one Slurm script executing multiple programs at once, it
might be a good idea to redirect stdout and stderr to disjunct files for improved
clarity and a reasonable chance to debug any arising issue. The syntax &> filename
means to catch both stdout and stderr in a single file named filename. The
alternative syntax catches them in separate files, with &1> outputfile catching
ordinary terminal output and &2> errorfile catching any error output.

LiDO3 | First Contact page 208 of 216

IT & Medien Centrum | LiDO3 | First Contact

Listing 4.26: List every command individually
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=2
#SBATCH --time=02:00:00
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
#SBATCH --exclusive

cd project_folder
call-to-single-threaded-program-a parameter1_1 parameter2_1 &>
↪ out-and-err.1 &

call-to-single-threaded-program-a parameter1_2 parameter2_2 &>
↪ out-and-err.2 &

call-to-single-threaded-program-b parameter1_3 parameter2_3 1>
↪ out.3 2> err.3 &

wait

Obviously, you are not restricted to calling the same program over and over again.
It is, however, advised to group your program calls by similar execution time per node
to avoid that a compute node is partially idle and gets underutilized once the first
programs finish.
If your parameters follow some sort of scheme or logic, you might want to use a simple
for loop to start all calculations with fewer lines of code.

LiDO3 | First Contact page 209 of 216

IT & Medien Centrum | LiDO3 | First Contact

Listing 4.27: Use a for loop to invoke commands
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=20
#SBATCH --time=02:00:00
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
#SBATCH --exclusive

cd project_folder
for ((i=0; i < $SLURM_NTASKS ; ++i)); do

call-to-single-threaded-program $i &> out-and-err.$i &
done
wait

In this example, we start 20 programs and pass a running number between 0 and 19
to each program. Here we simply assume that the program will then decide on its own
how to react: which input parameters to use based on the number passed as command
line argument.

4.10.2.2 Slurm’s srun --multi-prog option

The --multi-prog option of srun allows to start multiple programs (or the same
program multiple times) with different sets of parameters as long as the additional
parameters, e.g. --cpus-per-task, are identical.
For this purpose, srun parses a configuration file one needs to provide and that steers
the actual program execution.

LiDO3 | First Contact page 210 of 216

IT & Medien Centrum | LiDO3 | First Contact

The following configuration file srun.conf mimicks the commands run in exam-
ple 4.26: Listing 4.28: Example for srun.conf
0 call-to-single-threaded-program-a parameter1_1 parameter2_1 &>
↪ out-and-err.1

1 call-to-single-threaded-program-b parameter1_2 parameter2_2 &>
↪ out-and-err.2

2 call-to-single-threaded-program-b parameter1_3 parameter2_3 1>
↪ out.3 2> err.3

It tells srun to invoke call-to-single-threaded-program-a as the first
task, call-to-single-threaded-program-b as the second task and third
task.
The executable arguments may be augmented by expression %t which gets replaced
by the task number, and %o which gets replaced with task’s offset within this range.
If a line should be executed more than once, you can list multiple task ranks per line.
Multiple values may be comma separated. Ranges may be indicated with two numbers
separated with a ’-’ with the smaller number first (e.g. "0-4" and not "4-0"). To
indicate all tasks, specify a rank of ’*’ (in which case you probably should not be using
this option). If an attempt is made to initiate a task for which no executable program
is defined, the following error message will be produced "No executable program spec-
ified for this task".

Listing 4.29: Example for srun.conf with 6 tasks in total
0,5 call-to-single-threaded-program-a parameter1_1 parameter2_1

↪ &> out-and-err.%t
1-3 call-to-single-threaded-program-b parameter1_2 parameter2_2
↪ &> out-and-err.%t

4 call-to-single-threaded-program-b parameter1_3 parameter2_3 1>
↪ out.%t 2> err.%t

As is common in multiple programming environments, 0 references the first task
and $SLURM_NTASKS - 1 references the last task.
The corresponding Slurm script would look like this:

#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=3
#SBATCH --time=02:00:00

LiDO3 | First Contact page 211 of 216

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
#SBATCH --exclusive

cd project_folder
srun --multi-prog ./srun.conf

Note that with srun and its ability to spread jobs across multiple allocated compute
nodes, we could ask for more than a single compute node for this Slurm job, i.e.
increase the node count in the line #SBATCH --nodes=x to more than 1. Obviously,
we would then need to add many more lines to srun.conf to cater for a higher
workload.

4.10.2.3 GNU Parallel

GNU Parallel overcomes the disadvantage of the former approaches and relieves the
user from the burden of providing a matching number of program calls and matching
the execution times. In the simplest use case, one provides a file with one arbitrary
program execution per line. The amount of lines does not need to match the amount
of cores, allocated by your Slurm job scripts. GNU Parallel will process the next open
line, if any previously processed line finishes.

It is, however, advised to put those lines in front of all others that trigger a long
running simulation such that such a line will not get executed as one of the last.

Let us say we have a file similar to the above srun example:Listing 4.30: Example commands.txt
call-to-single-threaded-program-a parameter1_1 parameter2_1 &>
↪ out-and-err.1

call-to-single-threaded-program-b parameter1_2 parameter2_2 &>
↪ out-and-err.2

call-to-single-threaded-program-b parameter1_3 parameter2_3 1>
↪ out.3 2> err.3

Then this commands can be processed via

#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=1

LiDO3 | First Contact page 212 of 216

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH --ntasks-per-node=2
#SBATCH --time=02:00:00
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
#SBATCH --exclusive

cd project_folder
parallel < commands.txt

By default, GNU Parallel detects the number of cores of a node and starts one command
per core. You can use the parameter --jobs to specify the number of concurrent
commands explicitly.

parallel --jobs ${SLURM_NTASKS_PER_NODE} < commands.txt

If you want to use GNU Parallel with multiple nodes at once, you can provide a nodelist
via --sshloginfile. Note, that --jobs now controls the number of concurrent
programm calls per node.

scontrol show hostnames $SLURM_JOB_NODELIST > node_list
parallel --sshloginfile node_list --jobs ${SLURM_NTASKS_PER_NODE}
↪ < commands.txt

You may need to set up a proper inter-node SSH connections (see section 4.2.5
on page 58) to make this work.

Note that GNU Parallel does not load any module environment on the remote site. You
might simply want to ensure this in the commands.txt or by using the env_parallel
bash function.

LiDO3 | First Contact page 213 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.10.3 Slurm for Torque/PBS users
A Torque queue is a Slurm partition.

Table 4.9: Job control.
Action Slurm Torque/PBS Maui
Job information

squeue <job_id>
scontrol show job <job_id>

qstat <job_id>
qstat -f <job_-
id>

checkjob

Job information (all)
squeue -al
scontrol show job

qstat -f

Job information (user)
squeue -u $USER qstat -u $USER

Queue information
squeue qstat showq

Delete a job
scancel <job_id> qdel

Clean up leftover job
momctl -c <job_-
id>

Submit a job
srun <jobfile>
sbatch <jobfile>
salloc <jobfile>

qusb <jobfile> msub

Interactive job
salloc -N
<minnodes[-maxnodes]> \
-p <partition> sh

qsub -I

Free processors
srun -test-only -p
<partition> \
-n 1 -t <time limit> sh

showbf

Expected start time squeue --start -j <job_id>
showstart
<job_id>

Blocked jobs squeue --start
mdiag -b
showq -b

Queues/partitions
scontrol show partition qstat -Qf mdiag -c

Node list
sinfo -N
scontrol show nodes

pbsnode -l

Node details
scontrol show node <nodename> pbsnode

<nodename>
Queue 99

sinfo
sinfo -o "%P %l %c %D "

qstat -q

Start job
scontrol update JobId=<job_-
id> \
StartTime=now

qrun runjob

Hold job
scontrol update JobId=<job_-
id> \
StartTime=now+30days

qhold <job_id> sethold

Release hold job
scontrol update JobId=<job_-
id> \
StartTime=now

qrls <job_id> releasehold

99See also section Format options for slurm commands on page 119.

LiDO3 | First Contact page 214 of 216

IT & Medien Centrum | LiDO3 | First Contact

Table 4.9: Job control.
Action Slurm Torque/PBS Maui
Pending job

scontrol requeue <job_id>
Graphical Frontend

sview xpbs
set priority

scontrol update JobId=<job_-
id> \
-nice=-10000

setspri 10000 \
<job_id>

preempt job
scontrol requeue <job_id> mjobctl -R

<job_id>
suspend job

scontrol suspend <job_id> mjobctl -s
<job_id>

resume job
scontrol resume <job_id> mjobctl -r

<job_id>
QoS details

sacctmgr show QOS mdiag -q

4.10.3.1 Job variables in Slurm and Torque

The available field specifications include:

Table 4.10: Job variables.

Environment Torque/PBS Slurm
Job ID

PBS_JOBID SLURM_JOB_ID / SLURM_JOBID

Job name
PBS_JOBNAME SLURM_JOB_NAME

Node list
▲ PBS_NODELIST

PBS_NODEFILE

SLURM_JOB_NODELIST / SLURM_NODELIST

Submit directory
PBS_O_WORKDIR SLURM_SUBMIT_DIR

Submit host
PBS_O_HOST SLURM_SUBMIT_HOST

Job array index
PBS_PBS_ARRAY_INDEX SLURM_ARRAY_TASK_ID

User
PBS_USER SLURM_JOB_USER

LiDO3 | First Contact page 215 of 216

IT & Medien Centrum | LiDO3 | First Contact

4.10.4 Picture credits
◾ Windows Logo - Wiki Commons100

◾ Apple Logo - Wiki Commons101

◾ Tux Logo - Wiki Commons102

◾ Computer shape - Openclipart103

◾ Server shape Openclipart104

◾ Light bulb - Openclipart105

◾ Warning triangle - Openclipart106

◾ Clock - Openclipart107

◾ TU Dortmund ITMC - itmc.tu-dortmund.de108

◾ Mordor Meme generated with imgflip109

◾ TotalView pictures - PC2 TotalView HowTo110

◾ Remaining screeshots and figures - created by the LiDO Team

100http://commons.wikimedia.org/wiki/Category:Microsoft_Windows_logos
101http://commons.wikimedia.org/wiki/File:Apple_logo_black.svg?

uselang=de
102http://commons.wikimedia.org/wiki/Tux#/media/File:Tux.svg
103https://openclipart.org/detail/17391/computer
104https://openclipart.org/detail/171414/router
105https://openclipart.org/detail/211389/lightbulb
106https://openclipart.org/detail/14428/h0us3s-Signs-Hazard-Warning-

9-by-h0us3s
107https://openclipart.org/detail/217065/3-oclock
108https://www.itmc.tu-dortmund.de/cms/de/home/anfahrt/anfahrt-

hauptgebaeude/index.html
109https://imgflip.com/memegenerator/One-Does-Not-Simply
110https://wikis.uni-paderborn.de/pc2doc/Noctua-Software-TotalView

LiDO3 | First Contact page 216 of 216

http://commons.wikimedia.org/wiki/Category:Microsoft_Windows_logos
http://commons.wikimedia.org/wiki/File:Apple_logo_black.svg?uselang=de
http://commons.wikimedia.org/wiki/Tux#/media/File:Tux.svg
https://openclipart.org/detail/17391/computer
https://openclipart.org/detail/171414/router
https://openclipart.org/detail/211389/lightbulb
https://openclipart.org/detail/14428/h0us3s-Signs-Hazard-Warning-9-by-h0us3s
https://openclipart.org/detail/217065/3-oclock
https://www.itmc.tu-dortmund.de/cms/de/home/anfahrt/anfahrt-hauptgebaeude/index.html
https://imgflip.com/memegenerator/One-Does-Not-Simply
https://wikis.uni-paderborn.de/pc2doc/Noctua-Software-TotalView
http://commons.wikimedia.org/wiki/Category:Microsoft_Windows_logos
http://commons.wikimedia.org/wiki/File:Apple_logo_black.svg?uselang=de
http://commons.wikimedia.org/wiki/File:Apple_logo_black.svg?uselang=de
http://commons.wikimedia.org/wiki/Tux#/media/File:Tux.svg
https://openclipart.org/detail/17391/computer
https://openclipart.org/detail/171414/router
https://openclipart.org/detail/211389/lightbulb
https://openclipart.org/detail/14428/h0us3s-Signs-Hazard-Warning-9-by-h0us3s
https://openclipart.org/detail/14428/h0us3s-Signs-Hazard-Warning-9-by-h0us3s
https://openclipart.org/detail/217065/3-oclock
https://www.itmc.tu-dortmund.de/cms/de/home/anfahrt/anfahrt-hauptgebaeude/index.html
https://www.itmc.tu-dortmund.de/cms/de/home/anfahrt/anfahrt-hauptgebaeude/index.html
https://imgflip.com/memegenerator/One-Does-Not-Simply
https://wikis.uni-paderborn.de/pc2doc/Noctua-Software-TotalView

	LiDO3 - first contact
	Introduction
	Scope
	Non-scope

	Prerequisites
	How do I get / extend a user account?
	Application
	Approval
	Account creation

	SSH Key
	Create SSH key pair on Unix
	Create SSH key pair on Windows
	OpenSSH client
	PuTTY client (and derived software clients)

	Changing your SSH public key

	Publications
	Working with LiDO3
	Basic workflow
	Connect
	Unix
	Windows
	OpenSSH for Windows
	PuTTY
	WinSCP
	MobaXterm
	SSH Cryptonaut

	Starnet FastX
	Using the FastX Client
	Using FastX without Client in a Browser
	Cooperative working with FastX

	Cendio ThinLinc
	Logins to compute nodes and inter-node connections
	Troubleshooting
	Keyfile permissions
	Getting prompted for a password on login
	Rejected connections

	Linux Environment
	Working with the Linux shell
	Editing files

	Filesystems
	!/home! and !/work! file systems
	Read-only !/home! directory on compute nodes
	Dealing with the disk space quotas
	Compressing application data
	du output and the parallel file system BeeGFS

	!/scratch! file system

	Filetransfer between LiDO3 and external computers
	Shared file access
	Software modules, environment modules
	Loaded modules
	Available modules
	Load a module
	Unload a module
	Modules in job scripts
	Compiler modules

	Installing your own software
	configure-make-install
	!pip!, !venv!, !virtualenv! & !conda!

	Resource management
	Partitions
	Standard partitions
	Faculty partitions
	slurm command !sinfo!

	Slurm job submission
	Slurm with serial, threaded or MPI-based programs

	Interactive jobs
	srun - interactive execution and jobsteps
	salloc - Allocate nodes

	Batched job script execution
	sbatch - Submit a job script

	Controlling running and finished jobs
	scontrol, squeue, showq - Query Job status
	scancel - Cancel a queued job
	Decreasing job priority with scontrol, sbatch
	seff, sacct - show post job performance analysis

	Constraints on node-features
	Generic Resource (GRES) - request a GPU
	Memory management
	Utilize complete nodes
	SBATCH statements inside of Slurm job scripts
	Slurm cheat sheet
	List of job states
	Format options for slurm commands
	Job variables

	Examples
	Basic slurm script example
	Example using multiple GPU nodes
	Common software example: Abaqus
	On a single compute node
	On multiple compute nodes

	Common software example: Ansys CFX
	On a single compute node
	On multiple compute nodes

	Common software example: Ansys Fluent
	On a single compute node
	On multiple compute nodes

	Common software example: Ansys Mechanical APDL
	On a single compute node
	On multiple compute nodes

	Common software example: Ansys Workbench
	Common software example: Gaussian
	Common software example: Matlab
	Common software example: ORCA
	On a single compute node
	On multiple compute nodes

	Common software example: Python
	On a single compute node
	On multiple compute nodes
	Multithreading

	Common software example: R
	Using own R packages
	Installing own R packages
	Tweaking compiler optimisation flags

	Using multiple versions of R along with self-compiled R packages
	Example Slurm job script for R

	Common software example: TOPAS Tool for Particle Simulation
	Running a single TOPAS simulation
	Running hundreds of TOPAS simulations

	Third-party node usage example
	Signals and traps
	Have a job automatically clean up when exceeding requested wallclock time limit
	Passing Signals to your running application
	Sending arbitrary signals to a Slurm job

	Example for job steps
	Example for parallel debugging with TotalView

	System overview
	Dictionary
	Walltime
	Backfilling

	Get support / contact
	Frequently asked questions
	My Slurm job exits with !can't open /dev/ipath, network down (err=26)!
	No GPU is visible on a GPU node
	How can I use more than one CPU socket on a GPU node?
	Can I have Visual Studio Code on LiDO3?
	I can not open X11 programs on one gateway or compute node, but not on others

	Appendix
	Symbolic links for non-writable home directory
	Migrating your Slurm scripts to full node usage
	Executing several processes concurrently in the background
	Slurm's !srun! !–multi-prog! option
	GNU Parallel

	Slurm for Torque/PBS users
	Job variables in Slurm and Torque

	Picture credits

